
Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Introduction (rev. 1)

February 14, 2008

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

AWP.TRG.SWCTR/TO6.ADE/CAVE00.01

6/22/07 Page 2

Purpose of Course
Early developer-level introduction to facilitate cooperative
development
– Trying to evolve project toward an Open Source core
– Everything a part of the baseline and open to improvement

Early focus on architecture and design patterns
– Get the big picture right, before moving into specific capabilities
– Widen exposure to get more creative input

Workstations with full installation of ADE 1.0
– Source with Eclipse IDE
– Server Side Run environment
– CAVE visualization
– Javadocs and other documentation

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

6/22/07 Page 3

Training Prerequisites
Reading materials
– Software Product Improvement Plan

Software
– Pure Java

http://java.sun.com/docs/books/tutorial
– CAVE: ECLIPSE IDE Framework & Plug-Ins

http://www.eclipse.org
Eclipse RCP

– EDEX: Introductory level of Spring and Mule ESB
http://mule.codehaus.org

– All: Introductory level of ANT
– All: Introductory level of XML

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

6/22/07 Page 4

Course Objectives
Module 1: Architecture

Understand the overall System Architecture

Module 2: Installation, Build, and Regression Test
Successfully install ADE
Have ADE ready for running and development
Successfully do a “Clean Build and Deploy”
Successfully verify system installation by running a standard
regression test through a regression test GUI (e.g., Tomcat)
Learn how to use “Debug” to step through code running in
services

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

6/22/07 Page 5

Course Objectives (cont’d)
Module 3: MicroEngine Scripting

Understand how to create tasks and scripts for the
MicroEngine (uEngine)

Module 4: Data Type Plug-In
Learn why the Plug-In Pattern was chosen
Understand the architectural pattern of a Data Type Plug-In
Write a new Plug-In for a new data type
Put a MicroEngine task into a Data Type Plug-In

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

6/22/07 Page 6

Course Objectives (cont’d)
Module 5: Service Oriented Architecture (SOA)

Understand the architectural pattern of an SOA service
Understand how services are written
Understand how services are integrated into the system
Understand how to monitor and test an SOA service

Module 6: CAVE-Underlying Framework and Rendering
General introduction to CAVE
Understand how CAVE renders geospatial, vector, and x-y
data

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

6/22/07 Page 7

Course Objectives (cont’d)
Module 7: CAVE-User Interface

CAVE baseline orientation
Add functionality by modifying plugin.xml
Add a new menu item and custom resource

Module 8: CAVE Visualization Plug-Ins
Understand the mechanisms to extend CAVE
Write a new Plug-In to extend CAVE functionality

Module 9: Installation/Deployment
Install the EDEX services and CAVE application to a
supported platform

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

6/22/07 Page 8

Course Objectives (cont’d)
Module 10: CAVE Menu Creation

Describe the changes to Menu Architecture in made in TO6
Provide an example of creating a new menu in CAVE

Module 11: Localization
Introduce the Localization concepts in ADE 1.0
Describe the new Localization process

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

6/22/07 Page 9

Course Objectives (cont’d)
Module 12: TO8 ADE 1.0 Developer Updates

Describe revised Ingest Data Flow
Describe revised Data Access Layer implementation
Describe revised Database definition pattern
Review modifications to the Plug-in creation utility
Review Installer modifications for TO8

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.00 ADE/CAVE Introduction

6/22/07 Page 10

BREAK

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 1: Architecture (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE01.01

6/22/07 Page 12

Introduction
Early Decisions and Concerns That Drove Architecture
– How to deal with changing ConOps
– How to add new data types quickly
– Adding new science
– Scale to increasing data rates
– Lower sustainment costs

Some Core Principles
– Minimize coupling
– Increase cohesion
– Minimize size of code base
– Maximize simplicity
– Pull style data flow

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 Module 1: Architecture

6/22/07 Page 13

Architecture History Leading to SOA
Evolved out of the message-based approaches from 20 or 30
years ago for high-performance systems
In the 1990s: Systems built on message busses like
DecMessageQ, Tibco, MQseries
Evolved into J2EE and JMS (Java Messaging System) –
currently used by many systems
SOA: Somewhat of a rebellion against the unnecessary
complexity of J2EE for some domains
Decision to take the next step by decoupling the physical
service from the communication mechanisms through the
use of Enterprise Service Bus (ESB)

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 Module 1: Architecture

6/22/07 Page 14

Core Decisions –
Use ESB and Container-Based Processing

ESB with Execution Container
– Startup, shutdown, communication, multi-threading

MULE + SPRING Execution Container
– Dependency injection (minimizes coupling)
– Example: Look at PersistSrv.java

Outbound Endpoint Hit on
return statement in

service

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 Module 1: Architecture

6/22/07 Page 15

Core Decisions (cont’d)
JAVA as primary programming language
– Makes plug-ins possible, interfaces, classloading
– Traction in commercial and Open Source programming
– Performance comparable to other approaches
– Programmer productivity improvement

XML as primary text format for messages and configuration

– Self-describing, platform independent, standard parsers

Plug-In: The mechanism for extending the system

– Can be Hot deployable, or system cycled to pick up new plug-ins

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 Module 1: Architecture

6/22/07 Page 16

System Concept: AWIPS Architecture
Environmental Intelligence Framework

Requirements Vision drives Architecture
– Focus on “ilities” drives new AWIPS Architecture
– Features and capabilities get generalized into reusable patterns
– Customer TIMs give priority to capabilities

Architecture Framework Vision
– Create a new, low-cost framework for hosting a full range of

environmental services, including thick client visualization
– Scale down Framework to a small laptop and up to clusters of

enterprise servers without software change
– Base Framework on highly reusable design patterns that

Maximize reuse
Have datatype independence and fast adaptability

– Open Source leveraged to maximize reuse

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 Module 1: Architecture

6/22/07 Page 17

AWIPS Architecture Definitions

Term Definition
ADE AWIPS Development Environment; source code to Execution

Framework Enterprise Development Kit, including tools
SOA, End Points, I/O
Routing, Transforms

Service Oriented Architecture where system capability is
available at stateless endpoints

Canonical XML Well-formed XML that follows high-level rules
Patterns Implements a design solution that solves a problem that occurs

many times
Technical Reference
Architecture

A physical Software Execution Framework

JMS, JMX Java Messaging System (API), Java Management Extensions

CAVE Common AWIPS Visualization Environment
SEDA Serial Event Driven Architecture

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 Module 1: Architecture

6/22/07 Page 18

AWIPS Architecture Concept –
Architecture Framework Implementation

Framework Implementation: Integrated several “best of breed” Open
Source projects with a set of advanced enterprise patterns to create a
highly extendable framework
– Patterns implemented in pure Java (reuse example: ProductSrv and AutoBldSrv

use uEngine pattern)
– Open Source primary source of reuse

15 major Open Source projects integrated
Version controlled with CM baseline, libraries part of run environment
Leverages Internet community for core infrastructure
Standards compliant, rapid evolution
Free, large body of public expertise
Open Source libraries controlled by putting them in the CM Compile Library and
deploying them to the runtime environment

– Packaged together in the ADE, which contains everything from the Source
Code repository to the execution environment, including operator Clients

Concept

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 Module 1: Architecture

6/22/07 Page 19

AWIPS ADE Open Source Projects:
Integrated Open Source Projects

ANT Build scripting ADE build system
Mule + Spring Enterprise Service Bus + Container ADE Run Environment
ActiveMQ Java Messaging System Broker ADE JMS Broker
Jibx XML to Object Serialization ADE Canonical XML Message
GeoTools + JTS GIS capabilities ADE GIS primitives
Tomcat Web Server ADE Test Client Server
Jython Python Scripting Engine ADE uEngine Python Script Engine
Baltik Scalable Vector Graphics Tools ADE SVG tools
Rhino Java implementation of Javascript ADE uEngine Script Languages
Ehcache Event Driven Clusterable Cache ADE Cache Framework
Log4j Java Logging API ADE Log manager
Jogl Java API to OpenGL ADE CAVE rendering interface
Eclipse RCP GUI plug-in based framework ADE CAVE framework
Eclipse IDE Java Integrated Development ADE development environment
MC4J Console JMX Management Console ADE remote management console

Concept

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 20

2D/3D GIS

SOA Framework Concept
Extensible Architecture – Minimal Coupling

+Ingest Data
+Index Data +Store Data
+Adapt +Auto Build

+Request

+Subscribe +Collaborate

<Technical Reference Architecture>
Services

<Technical Reference Architecture>
SOA System Services (EDEX) Data Types

Transforms
Scripts

+domain libraries

+mapping libraries

Core Base of Services
MicroEngine
Plug-In Framework
Extensible XML model
Core SOA Services

Extend to a Specific Domain
Plug-in specific libraries
Plug-in data types, transforms

<Visualization Framework>
CAVE

Vis Plugin 1
Vis Plugin 2
Vis Plugin n

Satellite Feed 4.5Mps

Local Data

Meta
Data

Data

Raster Render
Vector Render

Drawing
Collaboration
XY Render

New in TO6New in TO6

Features

Auto Animate Localization

Service Interface To Data

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

Clean separation between data and
visualization
Canonical XML data model
Scriptable Interface

6/22/07 Page 21

Architecture Features:
Execution Container & Data

Enterprise Service Bus (ESB)
– Combined approach to integration: provides plumbing for highly

distributed, loosely coupled services
– Dependency Injection Container: Minimizes service and component

coupling, makes for more flexible services
– Messaging, Web Services, Data Transformation, Routing
– Process flow and service invocation (can span entire bus)
– Provides clear separation between business and control logic

Data Persistence
– Use of a simple retrieval-oriented metadata model that is keyed to high-

performance HDF5 file persistence
– Considered a fully normalized RDBMS model but adds only limited

value for transient weather data; the complexity not considered worth it

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 22

Architecture Features – Geospatial
Spatial-Enabled PostgreSQL and GeoTools with JTS

Geospatial enabling data
– Chosen approach: Create static spatial tables in PostgreSQL

PostGIS extension: Free, simple, high performance
– Visualization: Use ESRI Shape Files as standard vector format

Enables GIS analysis of data, also renders SVG using “batik”
Renders GeoTiff using Tiff tags

– Input / Output
All ingested data spatially indexed and can be spatially queried
Can create Shape and GeoTiff output

radar_spatial

spatial_grids

spatial_obs_stations

spatial_satellite

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 23

Architecture Features: Visualization
Approach
– Develop a Common AWIPS Visualization Environment (CAVE)

Supports the fixed scales and detailed interactions of D2D
Supports large data sets and analysis capability of N-AWIPS
Supports GIS visualization and analysis natively
Supports collaboration and remote Client operations

– Build on the Eclipse Rich Client Platform: Full-featured framework with
an extensive widget set, extendable through plug-ins, high
performance, Open Source

– CAVE: A set of Eclipse plug-ins installed in the Eclipse RCP
– Extensive support community, large public repository of plug-ins,

several graphics-intense applications being developed in it

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 24

ADE CAVE Visualization: Service End Point
Enables Gaming Style Data Interactions

T05 Radar Rendering Uses
Dynamic raster tiling

T05 Radar Rendering Uses
Dynamic raster tiling

GPU Shader Language Rendering
Controls (Color, …), Animation
GPU Shader Language Rendering
Controls (Color, …), Animation

New Quad tiling of large raster
Sets leverages HDF5 chunking
New Quad tiling of large raster
Sets leverages HDF5 chunking

Bundles with Save / Retrieve Define
Layers, Map Projection, Zoom
Bundles with Save / Retrieve Define
Layers, Map Projection, Zoom

Active Raster Data
Interrogation
Active Raster Data
Interrogation

Dynamic map reprojection using
GeoTools Transforms& GPU Warping
Dynamic map reprojection using
GeoTools Transforms& GPU Warping

Eclipse RCP 3.2 – Plug In Extendable
Plug In for Warn Generation Added

Eclipse RCP 3.2 – Plug In Extendable
Plug In for Warn Generation Added

All Tilts Keyboard ControlsAll Tilts Keyboard Controls

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 25

Architecture Features: Languages,
Interprocess Communication

Java the Primary Programming Language
– Extensive Open Source support, high programmer productivity, high

reuse, performance parity with traditional languages, university teaching
language

– Enables platform independence
Rhino (JavaScript) for scripting
– Extensible with Java classes, large base of customer scripts and

expertise, clean OO approach to scripting
JMS primary for interprocess communication
– Enables SEDA processing, increases reliability through queue persistence,

enables subscription / notification through topics
– Enables asynchronous communication for performance
HTTP, FTP, JMS, E-Mail for WAN Communication
– Firewall compatibility, enables CAVE to act like a thin client, can

transparently switch between JMS and HTTP without application
changes

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 26

Conceptual Architecture:
Logical Layered Viewpoint

Client/Presentation
Services

Platform Layer

Mission
Services
Layer

Data Access Layer

Metadata
Index

Data Persistence
Store

En
te

rp
ris

e S
er

vic
e B

us
 -

Co
m

m
un

ica
tio

n

Se
cu

rit
y S

er
vic

es
/D

em
ilit

ar
ize

d
Zo

ne
 (D

MZ
)

Spatial
Index

Hydro Models

LAPS

FORTRAN/C/C++
Command Line

Programs

External Programs

JMX

<<Java>>
DataLayer

PostgreSQL
HDF5

<<abstract>>
BaseDao

Hibernate

<<Java>>
HDF5DataStore

HDF5 API

IngestSrv

PersistSrv

IndexSrv

ProductSrv

AdapterSrv

NotifySrv

SubscribeSrv

AutoBldSrv

PurgeSrv

Mbean

New in TO6New in TO6

CAVE

StagingSrv

UtilitySrv

Localization
Store

Localization
Store

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 27

AWIPS II ADE High-Level System Services
SOA Services Running in an ESB Container

Services Independent of End Points

Features

IngestSrv
StagingSrv

PersistSrv
PurgeSrv IndexSrv ProductSrv

NotifySrv AutoBldSrv Collaboration

CAVE
Visualization

Client

Mbean Mbean Mbean Mbean

Mbean Mbean

TAF Plug In
METAR Plug In
Radar Plug In
Satellite Plug In
Radar Plug In

FileSystem
RDBMS via JDBC

Meta Data Index
Spatial Data Base

uEngine
Manage Subscription

Subscription Notify

Data Rendering
CAVE Bundles

CAVE Procedures
Wx Drawing
Wx Warning

Data Interrogation

Enterprise Service Bus – HTTP, JMS, Virtual Memory, File Endpoints

AdapterSrv
Mbean

Exec Adapter
JNI Adapter

Radar All Tilts

ADE 1.0

uEngine

HDF5 persistence

XMPP

Updated T06

Hydro Visualization

WAN Visible

GRIB Plug In

UtilitySrv

Mbean

Localization Data

JMX Remote
Service Management

Client

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 28

Service Descriptions
Service Description

IngestSrv Listens on an endpoint for new data and transforms the data into a
message

PersistSrv Writes ingested data to a persistent store file system or RDBMS
PurgeSrv Runs periodically to maintain the metadata and the persistent stores
IndexSrv Indexes the metadata extracted from the ingested data into a store that

facilities data searches and retrievals
ProductSrv Listens on an endpoint for external product requests and fulfills requests

with a response message. Typically receives “Action” scripts that describe
how to transform raw data into a visualization product

NotifySrv Broadcasts a product from a subscription fulfillment. Also sends out alerts
based on ingested data

AutoBldSrv Receives requests to build products that are under subscription. Triggered
by data arrival and/or time

ColaborateSrv Provides common point for serving out products shared by several clients
AdapterSrv Enables legacy command-line programs to be run as a standard service

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 29

ADE Implemented Design Patterns
Patterns Enable AWIPS “ilities”

CM/Build/Deploy Pattern Use Open Source tools to standardize build and enforce standards for
components

SOA Service Pattern Simplifies Service interactions with application containers
Canonical XML Service
Interface

Standardizes the request / response interface to SOA services

Component Model Standard pattern for injecting new components

uEngine Task Execution Pattern Enables system flexibility through re-use of small units of execution

Geo Spatial Pattern Enables building, displaying, analysis, and querying for data

Datatype Plug-in Pattern Enables system adaptability to new data and transforms
Legacy Adapter Pattern Enables system evolution by allowing legacy processes to run in an SOA

Data Notification / Subscription Enables data driven processing and display
Common AWIPS Visualization
Environment (CAVE)

Consolidates disparate display mechanisms into one platform independent
whole

Focus on Patterns That Maximize Reuse Across System Functions

Patterns

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 30

Software CM/Build/Deploy Pattern
Design Pattern

Build Vision: Create a simple layered build system that manages
component coupling and supports partial deployment
Build Implementation: Implemented in ANT as a series of macros
and ANT extensions

build.xml

config.xml

compile.xml

generate.xml

mortar.xml

taskdef.xml

build-global.properties

build-local.properties

Jar Files for Compiling
Open Source Jars

javadoc.xml

jibx.xml

test.xml

deploy.xml

Build
Patterns

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 31

Geospatial Pattern
Basic GIS Ingest, Indexing, Output, and Analysis

Geospatial Vision: All ingested data indexed by spatial
index making Spatial Query and Analysis available to the
Visualization Operator or SOA service

Geo Spatial Index
R-Tree Indexed Shape File

SpatialQuery

radar_spatial

spatial_grids

spatial_obs_stations

spatial_satellite

DataLayer
+obsSpatialQuery(…)

PostgreSQL Spatial Tables

Spatial
Pattern

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 32

Geospatial Pattern
Coordinate Reference System (CRS)

Spatial Descriptor: completely defines a grid area
– GeneralEnvelope: Geo Tools Concept
– GridGeometry2D: Geo Tools
– Coordinate Reference System

Coordinate Reference System (CRS) and
Grid definition

from a bundle.xml file in CAVE

Spatial
Pattern

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 33

BREAK

6/22/07 Page 34

AWIPS Data Models
Data Model Description

Service Interfaces
Data Model

Canonical XML model, message format for external interfaces to
SOA services

Metadata Model Key fields and their definitions for ingested transient data
Data Object Model Java OO model for internal data representations

Data in Object Model also has XML representation through JIBX
Data Persistence
Model

For transient data storage

Static Data Model For data that seldom changes
Data in Object Model also has XML representation through JIBX
Map Scale Areas
Station Data
Map overlays (ERSI shape files stored on disk)

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 35

Data Model Introduction
Canonical XML SOA Interfaces Excluded

Data Access Layer implementation using Hibernate
Data Access Object (DAO) concept leverages Hibernate
Data Persistence through HDF5. Why?
– High-performance gaming-level interactions supported
– Chunking of data records supports visualization tiling
– Flexible retrieval supports 4D rendering
– Streaming compression
Metadata implemented in PostgreSQL through Inheritance
– Defined only in plug-ins, drives Data URI
Base Object Model extended in plug-ins
Data URI concept ties everything together
Purging concept of circularly repository structures

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 36

Conceptual Data Model Design
I/O Formats Follows Existing Standards

Input Formats
• grib1/2
• GINI
• ASCII (WMO, shef, …)
• Radar Level II

CAVE

Output Formats
• Vector: ERSI shape file, SVG, Redbook
• Raster: GeoTIFF,png,jpg
• Text: Canonical XML, WMO Bulletins…
• VTEC warnings

Ingested
Persistence
Repository

• Flat Files
• HDF5

Decoded
Persistence
Repository

• Flat Files
• HDF5
• RDBMS

Metadata
Index

• RDBMS

Raw Storage Model
• Transmission Formats
• HDF5 model

Decoded Storage Model
• RDBMS Schema
• HDF5 model
• Static data model

Metadata Model
• RDBMS Schema

Data Flow

Internal Object Model

Data
Model

Request Formats
• Canonical XML

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 37

action

+actionTask…

AWIPS Canonical XML –
Top Level Structure (End Point Independent)

header

+id
+time
+function [execute,
subscribe,
validate]

body

+action script
+response
+…

body

+action script
+response
+…

action

+actionTask…

response

+URI
+ASCII
+InLine
+Error

XML document that is the
Payload Message of the
ESB endpoint[file, JMS, http,
E-mail, VM, …]

Well-formed XML that can be
parsed by DOM, SAX, common-
digester, …: dynamically extendable

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 38

Data Access Layer API
Hibernate Leading Object to Relational Approach

Solves fundamental problem of impedance mismatch
Maps between Object Model and Relational Data Model
Provides object-based query facilities
Improves performance over JDBC; designed for clustering
Reduces code count; improves productivity
Built-in support in SPRING

Internal Object Model

Hibernate Enables Metadata Performance and Adaptability

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 39

Plug-In Enables Adapting to New Data Types

Hibernate XML Object/Relational Mapping
Defined in SOA Plug-In: Enables Adaptability

Satellite Plug In
satellite.hbm.xml

SatelliteRecord.java

<<Java>>
SatelliteRecord

-product_type
-datatype
* * *

<<abstract>>
AbstractBlobDataRecord

Data Object Model

mapping

Data Object Model
Extended By Plug In
Follows Base Model

Data Object Model
Extended By Plug In
Follows Base Model

Plug-In Defined Object to
Relational Mapping by

Hibernate XML

Plug-In Defined Object to
Relational Mapping by

Hibernate XML

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 40

ADE Data Access Pattern
Layered API Leveraging Spring’s Hibernate Support

SPRING Dependency
Injection Container

SPRING’s
Hibernate
Support

SessionFactory

Mule ESBDALconfig.xml
• dataSource
• hibernateProps
• sessionFactory
• DAOs

<<abstract>>
HibernateDaoSupport

+getHibernateTemplate()
+getSession()
+getSessionFactory()

<<abstract>>
BaseDao

+persistMetadata()
+findMetadata()
+findPluginVersion(plugin)
+executeQuery(query)
+executeUpdate(query)
+generateTable(tableName)

<<Java>>
TextDao

+

<<Java>>
BlobDao

+

<<Java>>
DirectQueryDao

+

<<Java>>
DataLayer

+saveMetadata()
+findMetadata()
+findPluginVersion(plugin)
+executeQuery(query)
+executeUpdate(query)

plugins/**/*.jar
*.hbm.xml

C3P0 JDBC
Connection
Pooling

Enables Thread Safe
Access

mappingJarLocations

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 41

SOA Plug-In Defines a Metadata Table Set --
Each Plug-In Also Defines an HDF5 Set

[name1] Plug In

[nameN] Plug In

<<table>>
name1

<<table>>
Name1_1…n

<<table>>
nameN

<<table>>
NameN_1…n

<<table>>
PluginVersion

name1

nameN

HDF5 RepositoryRDBM MetadataRDBM Metadata

Data URI Creates HDF5 Record Structure

Circular SeriesCircular Series

Dynamic Metadata
Schema Follows Rules

Dynamic Metadata
Schema Follows Rules

Data
Model

Circular SeriesCircular Series

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

Flexible Data Model Is Plug-In Extendable to New Data Types

6/22/07 Page 42

Plug-In Creates New Metadata in RDBMS
Uses PostgreSQL Table Inheritance and Rules

<<Java>>
TableDDLGenerator

+setTableDefinition()
+generateDDL()
+createPartitionTables()
+createRules()
+getPurgeDDL()

*.db.xml

<<table>>
satellite

-product_type
-datatype
* * *

Insert Rule
Chooses Sub Table
As Function of Time

<<table>>
PluginVersion

Name
tableName
Version
hibClass

Plug-In Auto generates Metadata
Schema at Plug-In Load

Time

Auto generates Metadata
Schema at Plug-In Load

Time

Sub
Tables

Circular Series of Sub
Tables Enables a Self-
Maintaining Schema

Circular Series of Sub
Tables Enables a Self-
Maintaining Schema

<<table>>
satellite_1 … N

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 43

Metadata Demo –
Using CAVE’s Volume Browser

<<table>>
satellite

<<table>>
satellite1_1…n

Metadata StoreMetadata Store

<<Java>>
DataLayer

SOA Service
ProductSrv

Hibernate

Canonical XML Message
Query Metadata for Catalog

Canonical XML Message
Query Metadata for Catalog

Dynamically populates Select Boxes through Catalog Queries Dynamically populates Select Boxes through Catalog Queries

uEngine

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 44

General DataURI Concept –
Key for System Adaptability to New Data Types

DataURI: a reference to data in the data store (i.e., D2D Data
KEY)

Enables Automatic Subscriptions For all Ingested Data

Automatically ties data persistence to meta data

Enables Plug-In Extendibility to new data types without
changing any base code

ADE implemented a design for automatic generation of
DataURIs

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 45

IngestSrv

Metadata Model Drives DataURI
Auto-Generated DataURI Couples HDF5 to Metadata

<<Java>>
Plugin

+getDataURI()
+getMatchURI()

Satellite Plug In
satellite.db.xml

SatelliteWriter.java

XML Metadata
Definition File

Tag Specifies If
Element is Part of

Data URI

XML Metadata
Definition File

Tag Specifies If
Element is Part of

Data URI

Example Data URI
From a LOG File

Example Data URI
From a LOG File

<<Java>>
SatelliteWriter

PersistSrv

Auto-generates DataURI
references from
XML Definition

And Meta Decode of Ingested
Record

Auto-generates DataURI
references from
XML Definition

And Meta Decode of Ingested
Record

<<table>>
satellite

HDF5 RepositoryHDF5 RepositoryRDBM MetadataRDBM Metadata

Data
Model

Plug-In Enables Adapting To New Data Types
AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 46

Data Persistence Using HDF5
HDF5 Files In Time-Ordered Bins Like Metadata

/awips/opt/data/hdf5Circular Time Bins

i.e., Auto-generated dataURI ties Meta Data to HDF5 Record

Plug-In 1 Plug-In 2 Plug-In 3

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 47

<<Java>>
StorageProperties

ADE Data Persistence Using HDF5
Application Code Interfaces Through API

<<Java>>
HDF5DataStore

+addDataRecord()
+store()
+retrieve()
-writeHDF(group, record)
-createGroup()
-un|lockFile()

<<Java>>
DataStoreFactory

+getDataStore(file)

<<interface>>
IDataStore

+addDataRecord()
+store()
+retrieve()

<<interface>>
IDataRecord

+get|setDimension()
+get|setName()
+get|setSizes()
+getDataObject()

<<abstract>>
AbstractDataRecord

+get|setDimension()
+get|setName()
+get|setSizes()
+getDataObject()

<<Java>>
ByteDataRecord

+get|setByteRecord()

<<Java>>
FloatDataRecord

+get|setFloatRecord()

<<Java>>
IntegerDataRecord

+get|setIntegerRecord()

<<Java>>
ShortDataRecord

+get|setShortRecord()

<<Java>>
SatelliteWriter

+write(record)
{ dataStore =

(HDF5DataStore)

DataStoreFactory}

jhdf5.jar

Data
Model

Plug-In Code
Using HDF5 api

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 48

uEngine Using the Data Access Layer
Single API Enables uEngine to Access All Data

<<Task>>
SpatialQuery

+execute()

<<Task>>
TermQueryIndex

+execute()

<<Java>>
DataLayer

+saveMetadata()
+findMetadata()
+findPluginVersion(plugin)
+executeQuery(query)
+executeUpdate(query)

uEngineuEngine

Results =
dataLayer.findMetaData
(plugin,
fields[],
operands[],
values[],
sort, count)

createMetaDataMap()

HDF5 RepositoryHDF5 Repository

Dynamically
Creates URI Reference to

Data Record

Dynamically
Creates URI Reference to

Data Record

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 49

Purging Data: Self-Maintaining
Drops Metadata Tables & HDF5 Bins Periodically

PurgeSrv

<<Java>>
PurgeRoutine

+deleteData()
+deleteMetaData()

SPRING QUARTZ TIMER
Activated Service

<<table>>
name

-product_type
-datatype
* * *

<<table>>
name_1 … N

Sub
Tables

name1

nameN

HDF5 Repository
Circular Bin SeriesCircular Bin Series

Metadata RDBMS

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 50

System Flow Diagrams

System Level Diagrams

Ingest
Flow

Application
Migration

Subscribe
Flow

Notify
Flow

Warning
Flow

NDFD
Flow

Service
Flow

RFC
Product

Flow

Forecaster
Product

Flow

ADE 1.0
Product
Request

Flow

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 51

Ingest Flow
Ingest at a Clustered End Point Service

Flow

StagingSrv

Metadata IndexPersistence
Repository HDF5

Platform/Infrastructure Resources Layer

Native Services Layer
SOA ESB Services

Data Access Objects

Platform/Infrastructure
Resources Layer

/awips/opt/data/sbn/…
/awips/opt/data/processing

JMS Broker

JMS://cp/…File Name

IngestSrv PersistSrv IndexSrv

vm://*IndexVMQueue
vm://persistVMQueue

Queue Clustering

Plug-in(plug-inType)
+ .getSeparator()

File End Point

Platform/Infrastructure Services Layer

DataLayer
+saveData(record)
+saveMetadata(record)

Enterprise Service Bus –HTTP,JMS, VM,…
Endpoints

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 52

Client/Presentation Layer

Product Request Flow
Cave Requests Data for Display as a GIS Layer

ProductSrv

termQuery

uEngine Pattern

Metadata IndexPersistence
Respository HDF5

fileInmakeResponse

Enterprise Service Bus –HTTP,JMS, VM,…
Endpoints

Input Message
Canonical XML

With body containing
action commands

Input Message
Canonical XML

With body containing
action commands

Output Message
Canonical XML

Response to Client
Containing URI references
to data generated

Output Message
Canonical XML

Response to Client
Containing URI references
to data generated

Native Services Layer

Data Access Objects

CAVE SEDA Service Scaling SEDA Service Scaling

Service
Flow

Platform/Infrastructure Services Layer

Platform/Infrastructure Resources Layer

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 53

Notification Flow –
Ingest Flow Triggering Notification

IngestSrv PersistSrv IndexSrv NotifySrv AutoBldSrv JMS Topic

store

product

DataNotify
checkSubscription

runAction
actionResponse

SBN
GOES East IR

CAVE

Eclipse
Job

Service
Flow

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 54

Subscription Flow –
CAVE Requests a Subscription

ProductSrv

Subscription

SubscriptionSrv

subscribe

makeDataURI

CAVE

createSubscriptionResponse

addScript(scriptID, script)

A

A

cacheManager

put(new Element(dataURI, subscription)

Auto-generate
DataURI

from
Metadata

Cache Subscription
(Cache can be

persisted)

Service
Flow

AWP.TRG.SWCTR/TO6.ADE/CAVE-01.01 ADE/CAVE Module 1: Architecture

6/22/07 Page 55

BREAK

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 2: Installation, Build, and Regression Test
(Multiplatform) (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE02.01

6/22/07 Page 57

Objectives
Successfully install ADE
Have ADE ready for running and development
Successfully do a “Clean Build and Deploy”
Successfully verify system installation by running a Standard
Regression Test through a Regression Test GUI (e.g.,
Tomcat)
Learn how to use Debug to step through code running in
services

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 58

Build Products

AWIPS Development Environment (ADE) –
An End-to-End Technical Reference Architecture

ADE
Build Process

CM Source Repository Eclipse IDE for Java Deployment

Workstation

CAVE

Server/ Workstation

IngestSrv
PersistSrv

AdapterSrv
NotifySrv
SubscribeSrv

AutoBldSrv
IndexSrv

Service Container

Persistent
Store Metadata

Index Spatial
Index

File System Endpoints Regression
Tests

Data Sets

Documentation
• JavaDoc
• Design Docs
• How-to …

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 59

ADE Delivery: One DVD Posted to Site
CAVE Install

• Source as Eclipse project
• Maps and sample data

Documentation
• Software Test Plan
• Requirements Traceability Matrix
• uEngine scripts

Dependencies
• ANT
• JAVA + JAI
• Eclipse IDE

ADE Install Procedure
• Linux
• Windows

Server Side Install (EDEX)
• Execution environment
• Self-extracting deployment
• Regression test data
• Source as Eclipse project

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 60

ADE Install Procedure

ADE installation instructions are documented in Module 9:
Installation/Deployment.

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 61

Start-Up Server Side
RHEL Linux
– Start ActiveMQ: awips/activemq/bin/activemq-standalone.sh
– Start Mule: awips/opt/esb/bin/start.sh standalone
– Start Tomcat: awips/tomcat/bin/startup.sh

Windows
– Start the VMWare image
– Start ActiveMQ: awips/activemq/bin/activemq-standalone.sh
– Start Mule: awips/opt/esb/bin/start.sh standalone
– Start Tomcat: awips/tomcat/bin/startup.sh

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 62

ADE Regression Tests: Start Tomcat

Select a Data Type
Performs a catalog
query

Select a Data Type
Performs a catalog
query

View JavaScript
Messages
• Editing the request

View JavaScript
Messages
• Editing the request

Ingest Regression
Test Data
• Performs the copy to

ESB endpoint

Ingest Regression
Test Data
• Performs the copy to

ESB endpoint

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 63

ESB / Container Log File for Ingest

Radar Ingest Service
• Note 3rd instance
Radar Ingest Service
• Note 3rd instance

Catalog Query
• To ProductSrv
• Canonical XML msg

Catalog Query
• To ProductSrv
• Canonical XML msg

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 64

Remote Debugging of ESB SOA Services
Example Stepping Through “ProductSrv”

Right click to set
breakpoint at beginning
of +process() method

Right click to set
breakpoint at beginning
of +process() method

View data as it changesView data as it changes

Step controlsStep controls

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

Enable debug in awips/mule/conf/wrapper.conf

6/22/07 Page 65

Server Side: Developer Build and Deploy

Shutdown server processes: Ctrl-C in command
window. Shutdown hook ensures clean
shutdown.

Shutdown server processes: Ctrl-C in command
window. Shutdown hook ensures clean
shutdown.

Change directory to build directory in your
project area using a command terminal.
Change directory to build directory in your
project area using a command terminal.

ant clean removes “dist” directory
ant build performs a smart build
ant jibx creates the JiBX bindings
ant deploy deploys build artifacts to run environment
ant uEngineWeb regression test web site

ant clean removes “dist” directory
ant build performs a smart build
ant jibx creates the JiBX bindings
ant deploy deploys build artifacts to run environment
ant uEngineWeb regression test web site

Start server processes and test.Start server processes and test.

AWP.TRG.SWCTR/TO6.ADE/CAVE-02.01 ADE/CAVE Module 2: Installation, Build, and Regression Test (Multiplatform)

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 3: MicroEngine Scripting (rev. 2)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE03.02

6/22/07 Page 67

Prerequisites/Objectives
Prerequisites
– Access to an installation of ADE 1.0
– Familiarity with utilizing Eclipse for Java development
– Familiarity with Object Oriented Programming
– Programming experience in the Java programming language

ADE 1.0 utilizes Java 1.6

Objectives
– Understand how to create tasks and scripts for the MicroEngine

(uEngine)

Estimated Time: 1 hour

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 68

uEngine Overview
Architecture
Tasks
JavaScript Scripting
Client Applications

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 69

uEngine Task Execution Pattern
Breaks Up Execution Into Small, Reusable Tasks

uEngine Vision
– Create an execution framework for generating custom products on

demand
– Customer systems can request products by script requests over a

network
– Script performs small general units of work that get chained together

to produce a customer product

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 70

<action name="ServiceGribImageDecode">
<termQuery>

<query name=“grid_type”
value=“22” />

</termQuery>

<degrib/>

<gribMap colorMap=“GribRGB” />

<colorImage colorMap=“GribRGB” />

<imageOut format=“png” />

<fileOut/>

<worldFileInfo/>

<makeServiceResponse />
</action>

uEngine Task Execution Pattern
Original Concept – XML-Based Declarative Scripts

termQuery query

degrib

gribMap colorMap

Task
XML child
elements

Input
ChainDataType

Output
ChainDataType

colorImage colorMap

imageOut format

fileOut

worldFileInfo

makeServiceResponse

<<abstract>>
Task

+addRules(Digester)
+init(ChainDataType)
+ChainDataType execute()

Adding a new uEngine Task
1. Extend Task
2. Implement addRules()
3. Implement abstract methods

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 71

uEngine Task Execution Pattern
Original Concept – XML-Based Declarative Scripts
μEngine scripts seen as a series of blocks
needed to build a visualization product
– Scripts were seen as following a simple I-P-O

(input, process, output) flow of control
– All tasks processed the same set of data
Most of the “grunt” work performed within
the tasks
– Looping and conditional processing was built

into the individual tasks
– Passing information between tasks became

very complicated
Result: Scripts were fairly easy to write;
tasks were extremely difficult to write

termQuery query

degrib

gribMap colorMap

colorImage colorMap

imageOut format

fileOut

worldFileInfo

makeServiceResponse

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 72

uEngine Task Execution Pattern
Data Transformation Into Decision Aids: Scripting

mathScript

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 73

uEngine Task Execution Pattern
Original Concept: XML-Based Declarative Scripts

More complicated products require
more complicated data and logic
flows
– The diagram shows the data flow

used to create a wind speed product
– Separate data flows for model and

observation data combine to form a
single visualization product

This requires the ability to
– support multiple data queries (1)
– selectively process the data (2)
– process multiple return values from

a query (3)
These considerations drove the
need for a better scripting engine.

1 3

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

2

6/22/07 Page 74

uEngine Task Execution Pattern
Scripting Engine Alternatives: Jython

Jython
– Pure Java implementation of Python
– Current implementation Version 2.2b2 – release date: May 10, 2007

Note that Python is currently at release 2.5.1, released April 18, 2007
Python 2.2.3 was released on May 30, 2003, so Jython is essentially 4 years
behind Python
Development of Jython support products also lags behind Python

– Numerous books on Python/Jython programming available
– Jython integrates well with Java

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 75

uEngine Task Execution Pattern
Scripting Engine Alternatives: JavaScript

JavaScript/Rhino
– JavaScript: A Java-like scripting language originally developed for Web

browsers (Netscape 2)
– Rhino: an Open Source implementation of JavaScript written in Java

Does not require Web browser for execution
– Numerous books on JavaScript programming available
– Rhino integrates reasonably well with Java

Java Scripting API
– Java SE 6 includes the JSR 223=based Java Scripting API

Defines a consistent interface for embedding script engines in Java apps
The only “out of the box” scripting support in Java SE 6 is for a Rhino-based
JavaScript engine

Rhino-based JavaScript: The scripting language of choice

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 76

Architecture
Uses Mozilla's freely available Rhino
– Same JavaScript engine in JDK 1.6, except that Mozilla version offers

more features
– Used in Eclipse

UEngineScript class – simply call setScriptText(String
javaScriptCode) and run()
Subscription scripts compiled once for faster execution
Can include .js libraries in a script

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 77

Architecture: How It Works
Rhino returns the last executed global statement of the script
– That is, the last statement not in a function
– Sample Query for METARS Script (Slide 83) returns the execution of

metarQuery();
– UEngineScript will convert this to an Object[]

Because tasks should only operate on one data object, “for”
loops are used in the JavaScript
queryResults is a java.util.ArrayList object; Java objects can
be used in the JavaScript script
Not forced into chain data; instead pass along the results of
each task execution

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 78

Architecture: Potential Issues
Loosely typed
– Like most “scripting” languages, JavaScript is loosely typed
– Cannot distinguish between the various numeric types
– Solution: Rather than primitives, pass Java objects between Java and

JavaScript
No primitive arrays
– JavaScript arrays are objects
– Processing a Java array in JavaScript corrupts the object
– JavaScript able to process java.util.List and java.util.Map based

structures
– Solution: Rather than arrays, pass java.util.List and java.util.Map

based structures between Java and JavaScript
Note: Starting with Java SE 5, Java automatically converts

between primitives and objects as needed.

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 79

Tasks
Tasks extend ScriptTask
– Tasks are “Plain Old Java

Objects” (POJOs) with an
execute() method

– Tasks only operate on one
object

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 80

Programming Example
Create an Engine Task that writes
a message to the system log file
– Logger will support 3 levels;

“warning,” “info,” and “debug”
– Logger will have a single method for

logging a message

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

Use Eclipse to demo the
class creation.

6/22/07 Page 81

Programming Example: Java Code

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

Use Eclipse to demo the class
creation – comments omitted.

6/22/07 Page 82

JavaScript Scripting
Benefits

Familiar syntax
Object Oriented scripts
– Reusable objects and methods
– Easier to update
– Abstract/hide code

Decision aids
– If statements, for loops, etc.

More customizable scripts

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 83

JavaScript Scripting:
Sample GriB to Image Script

gribRequest();

function gribRequest()
{

var plugin = "grib";
var query = new TermQuery(plugin);
query.setCount(3);
query.addParameter("paramid", "Temperature");
query.addParameter("levelinfo", "50000.0_Pa");
var queryResults = query.execute();
var responses = new Array();

for(i=0; i < queryResults.size(); i++)
{

var currentQuery = queryResults.get(i);
var fileIn = new FileIn(plugin, currentQuery);
var gribMap = new GribMap(plugin, "GribRGB", fileIn.execute(), currentQuery);
var imageData = gribMap.execute();
var colorMap = new ColorMapImage("GribRGB", imageData, gribMap.getGridGeometry());
var format = "png";
var imageOut = new ImageOut(colorMap.execute(), format, gribMap.getGridGeometry());
var fileOut = new FileOut(imageOut.execute(), format);
var makeResponse = new MakeResponseUri(fileOut.execute(), null, currentQuery.getDataURI(), format);
responses[i] = makeResponse.execute();

}

return responses;
}

gribRequest();

function gribRequest()
{

var plugin = "grib";
var query = new TermQuery(plugin);
query.setCount(3);
query.addParameter("paramid", "Temperature");
query.addParameter("levelinfo", "50000.0_Pa");
var queryResults = query.execute();
var responses = new Array();

for(i=0; i < queryResults.size(); i++)
{

var currentQuery = queryResults.get(i);
var fileIn = new FileIn(plugin, currentQuery);
var gribMap = new GribMap(plugin, "GribRGB", fileIn.execute(), currentQuery);
var imageData = gribMap.execute();
var colorMap = new ColorMapImage("GribRGB", imageData, gribMap.getGridGeometry());
var format = "png";
var imageOut = new ImageOut(colorMap.execute(), format, gribMap.getGridGeometry());
var fileOut = new FileOut(imageOut.execute(), format);
var makeResponse = new MakeResponseUri(fileOut.execute(), null, currentQuery.getDataURI(), format);
responses[i] = makeResponse.execute();

}

return responses;
}

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 84

JavaScript Scripting:
Sample Query For METARS Script

function MetarRequest(){}

function metarQuery(count)
{

var query = new TermQuery("metar");
query.addParameter("reportType", "METAR");
query.setCount(count);
var queryResults = query.execute();
return this.makeAsciiResponse(queryResults);

}

function makeAsciiResponse(queryResults)
{

var xmlResults = new Array();
var response = new Array();
for(i=0; i < queryResults.size(); i++)
{

var toXml = new AsciiToXml(queryResults.get(i));
xmlResults[i] = toXml.execute();
var makeResponse = new MakeResponseAscii(queryResults.get(i), xmlResults[i]);
response[i] = makeResponse.execute();

}

return response;
}

MetarRequest.prototype.metarQuery = metarQuery;

MetarRequest.prototype.makeAsciiResponse = makeAsciiResponse;

// Code the user writes:
var dataRequest = new MetarRequest();
dataRequest.metarQuery(3);

function MetarRequest(){}

function metarQuery(count)
{

var query = new TermQuery("metar");
query.addParameter("reportType", "METAR");
query.setCount(count);
var queryResults = query.execute();
return this.makeAsciiResponse(queryResults);

}

function makeAsciiResponse(queryResults)
{

var xmlResults = new Array();
var response = new Array();
for(i=0; i < queryResults.size(); i++)
{

var toXml = new AsciiToXml(queryResults.get(i));
xmlResults[i] = toXml.execute();
var makeResponse = new MakeResponseAscii(queryResults.get(i), xmlResults[i]);
response[i] = makeResponse.execute();

}

return response;
}

MetarRequest.prototype.metarQuery = metarQuery;

MetarRequest.prototype.makeAsciiResponse = makeAsciiResponse;

// Code the user writes:
var dataRequest = new MetarRequest();
dataRequest.metarQuery(3);

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 85

JavaScript Scripting: Object Oriented
JavaScript supports user-defined
objects
– An object is a container for attributes,

which can be values, functions, or
objects

– This allows creation of class objects
similar to those in OO languages

Internally, the class instance is referenced
via the this keyword

Syntax used for class object
definition/creation is shown at right
The class constructor is a function that
is used to create the object
– Use the this keyword to assign instance

attributes
The prototype object is used to create
class attributes
– All instances share the class attributes
– Class methods are assigned to the

prototype object

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 86

JavaScript Scripting: Object Oriented (cont’d)
Class definitions may be contained
in a separate .js file
– ADE 1.0 includes sample JavaScript

definition files which are used by the
Micro Engine Test Web pages

– IN ADE 1.0, JavaScript class
definitions are located in ~/opt/esb/js

The client application uses an
“include” statement to cause the
μEngine script runner to load the
class file.

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

This approach allows for the creation of
utility scripts with a simplified user interface.

6/22/07 Page 87

JavaScript Scripting:
Three-Tiered Approach

Object approach outlined on previous
slides allows for a three-level approach to
μEngine development
– μEngine tasks are created to perform a

specific function such as querying the data
store or performing math functions on sets
of data

– a μEngine is created to perform a general
task such as retrieving satellite imagery.
script is written as a JavaScript class with
setter methods for key script parameters.

– A user writes a short script to utilize the JS
class. The actual code for creating the script
may be hidden behind a GUI interface.

The AWIPS Test Driver Web page uses
this approach!

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 88

Programming Example
Convert the sample GRIB →
Image script (slide 82) into a
JavaScript class and create the
“user” script.

Hints:
Provide:
– a setter for the number of images
– a setter for the query parameters
– a setter for the color map
– a setter for the image type

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

Use Eclipse to demo the file
creation – comments omitted.

6/22/07 Page 89

Programming Example: The JavaScript

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

Map Methods to
Object Prototype

Setters

Constructor

Execute Method

User Script

6/22/07 Page 90

Client Applications
Clients can build Object Oriented JavaScript and include it in
the script behind the scenes – user has to write very little
code to run scripts
Clients can extend uEngine functionality by adding
JavaScript methods
– Example: Calculate wind chill off MetarRecord returned by a

TermQuery

CAVE could use Eclipse plug-in architecture to embed a
JavaScript IDE and assist users in creating scripts

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 91

Client Applications (cont’d)

var metarData = new MetarData();
metarData.displayWindChill(true);
metarData.metarQuery();

A user only needs to write three lines if the library is imported or if
the client application includes it.

Example Query Using the METAR Script:

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 92

JavaScript Scripting: Subscriptions
EDEX supports subscribing for a
product
– The subscription is based on the data

type and a script used to create the
product

– CAVE uses subscription to create auto
updating loops

When data arrives, EDEX replaces the
general query originally used with a
specific data item
This requires specially constructed
scripts
– Scripts are limited to a single data

request
– The script must be subscription enabled
– Subscription does not work reliably (as of

ADE 1.0) in a clustered environment

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 93

JavaScript Scripting: Subscriptions (cont’d)
To make a script subscribable:
– Script must be written as a

JavaScript class
– TermQuery task query must be an

instance variable
– TermQuery task’s three-argument

constructor must be used
Arguments must be as shown

– Class must have a subscription
instance variable; this will contain a
Subscription object

– Class’ main action method (usually
_execute) must set up the
subscription object

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 94

Programming Example
Convert the sample GRIB →
Image script (slide 82) into a
subscription script.

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

Use Eclipse to examine the code.

6/22/07 Page 95

Programming Example:
Grib Request Class for Subscription

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

Code modifications are
in bold.

6/22/07 Page 96

Micro Engine: Known Issues
μEngine cannot use “C++” style comments (corrected – TO8)
Subscription has some problems, generally related to
clustering
Radar GeoTIFF retrievals are broken
The Spatial Query task is broken and should not be used

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

6/22/07 Page 97

Summary
Architecture includes .js libraries
– Supports subscriptions

Simpler tasks
– POJOs with an execute() method
– Eliminates chain data, metadata, and digester rules
– Less code

Advanced scripts
– Object Oriented potential
– Flexible customization
– Client applications can extend functionality of uEngine

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.02 ADE-CAVE Module 3: MicroEngine Scripting

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 4: Data Type Plug-in (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE04.01

6/22/07 Page 99

Objectives
Learn why the Plug-In pattern was chosen
Understand the architectural pattern of a Data Type Plug-In
Write a new Plug-In for a new data type
Put a MicroEngine task into a Data Type Plug-In

Estimated Time: 3 hours

Notes:
Some slides reiterate material previously presented, and are included
here for completeness. Others provide additional information for the
developer. These slides will not be covered in this briefing.
Questions? Please ask at any time.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 100

Prerequisites
Access to an installation of ADE 1.0
Familiarity with utilizing Eclipse for Java development
Familiarity with Object Oriented Programming
Programming experience in the Java programming language
– ADE 1.0 utilizes Java 1.6

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 101

Topics
Data Type Plug-In Concepts
Plug-In Archive/Build Details
AWIPS EDEX Plug-In Architecture
Data Record Objects
Data Plug-In Configuration
ADE Plug-in Creation Tool
Adding Plug-In to EDEX Ingest
Adding uEngine Data-Type Processing

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 102

Data Type Plug-In Concepts

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 103

Why a Plug-In Pattern?
Must be able to:
– Add new data processing capability with minimal impact to the

remaining system
– Extend a deployed system to new data sources
– Fully integrate new data sources into the system so that all the

standard display and analysis features can be used
– Add custom data transforms to a deployed system
– “Hot deploy” to add new data types to the existing system

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 104

What Is a Plug-In in Java Terms?
Plug-In:
– Encapsulates all processing needed for a data type
– Implements classes exposed through Java interfaces
– Classes accessed by interface, and data type through a plug-in factory

Plug-In Factory:
– Uses Java class loading to create the appropriate class for the

requested interface
– Is XML configurable

No change to existing code when new Plug-In is added
All data ingest completed through a Plug-In
– ASCII data processing in the MicroEngine: All Plug-In based!

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 105

Easy Adaptability to New Data Types
Plug-In Vision: Create a component that can be plugged
into a deployed system to adapt the system to a new data
type. Plug-In will enable ingest, storage, retrieval, and
transformation of data.
Plug-In Implementation: Java plug-in pattern with a class
loader to allow dynamic deployment. Metadata extraction
and indexing are based on a metadata store with a URI-
based data repository.
– Note: Plug-ins become possible with Java’s “Interface” class and

Java’s concept of class loading.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 106

Plug-In Interface to SOA Services

IngestSrv PersistSrv IndexSrv ProductSrv

NotifySrv AutoBldSrvUtilitySrv ColabrateSrv PurgeSrv

CAVE
Visualization

Client

ADE 1.0 Services

Mbean Mbean Mbean Mbean

Mbean Mbean Mbean Mbean Mbean

JMX Remote
Service Management

Client

GRIB Ingest
Observation Ingest
Radar Ingest
Satellite Ingest
SHEF Ingest
TAF Ingest

HDF5 Archive PostgreSQL Data Base uEngine
Subscription Manager

SubscriptionNotify
AlertNotify

Data Rendering
Notify Response

CAVE Scripting
Wx Drawing
Wx Warning

Data Interrogation

AdapterSrv

Mbean

Exec Adapter

Hydro Visualization

uEngine

Services Independent of End Points

Enterprise Service Bus – HTTP, JMS, Virtual Memory, File Endpoints

Warning Ingest

Localization Database Purge
HDF5 Purge

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 107

High-Level Concept Diagram
Metadata stored in PostgreSQL
tables by data type (plug-in)
Raw Data repository independent of
data type
Queries work the same way with any
data type

Raw Data

PostgreSQL Index
Tables

URI-Based Raw Data
Repository

Satellite Wx Data

Data
Access

Layer

Database
Admin
Tool

Persist
Raw Data

Extract Metadata
(Use Endpoint Data

If Possible)
Enough for Unique

Retrieval

Create MetdData
Document

Implementation
In Plug-In

Data Type
Based Query

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 108

Java Files Involved in Plug-In Concept
Enables new / modified
data types to be
deployed to live systems
Enables new science
through new transforms
Plug-Ins built and
packaged as separate
components

Wx Satellite Plug-in

<<Java Class>>
Plugin Core

Pattern +
Class Loader

<<Java Class>>
Implementation

Plug-in Jar Container

XML Plug-in
Configuration

XML Plug-in
Configuration

XML Plug-in
Configuration

<<Java Class>>
Implementation<<Java Class>>

Implementation<<Java Class>>
Implementation<<Java Class>>
Implementation

<<ESB Service>>
Plug-in Capability

Becomes
Available to

Services

<<JAVA Virtual Machine>>
ESB Container

<<Java Interface>>
Extract Metadata
<<Java Interface>>

Store Data
<<Java Interface>>

Decode Data
<<Java Interface>>

Transform Data

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 109

Data Type Plug-In Factory Concept
The Vision: Data type Plug-In provides the means for
ingesting data into the system and exporting data from the
system. Internally (to the extent possible), this should be
handled in a type-neutral format.
The Implementation: Goal of the data type Plug-In definition
is to encapsulate the data handling of a data capabilities into
a package having well-defined interfaces.

The Factory: In OO, a “factory” is defined as a class that
creates and delivers instances of a class implementing a
specific interface. Client requests the instance using
metadata, for example, the name of the Plug-In.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 110

Factory Concept

I need a
METAR decoder.

Send METAR Decoder

1. Client uses data type name (METAR) to
request a decoder

2. Factory uses the XML configuration file to
determine the class to create

3. Factory returns the MetarDecoder class
(which is referenced by IMessageDecoder
interface)

1

2

3
<<interface>>

IMessageDecoder

+decode()
+setMessage(byet[]})

+decode()
+setMessage(byet[]})

<<class>
MetarDecoder

+decode()
+setMessage(byet[]})

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 111

AWIPS EDEX Data Flow & Plug-Ins

Data type Plug-In used for processing as data flows from Ingest Server to Client
Plug-In architecture allows implementation of generic (data neutral) services
– Notes:

Except for Ingest, a single service handles all data types.
Ingest uses a separate service for each data type, but all use the same Java class.

Plug-In architecture supports data flexibility

AutoBldSrvArchiveSrv IngestSrv IndexSrv NotifySrv

Subscription uEngine Client

ProductSrv
Index Persist

Data Access Layer

Plug-In capabilities are used by the various EDEX services (in red)

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 112

Plug-In Relationship to Metadata
Each Ingest Service end point
works with a specific type of
data

– End point receives a file pointer
from ArchiveSrv via Java
Message Service (JMS) message

– IngestSrv uses information
obtained from end point
configuration to request
appropriate Plug-In to process the
file

– Plug-In decodes the metadata,
then passes the metadata
(including Plug-In name) to the
Index Service

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

IngestSrv
Mbean

1

Plug-In

2

3

IndexSrv
Mbean

ArchiveSrv
Mbean

6/22/07 Page 113

Plug-In Relationship to Data Persistence
For Plug-Ins that require separate data persistence, the data record
implements the IPersistable interface.
– Plug-In responsible for converting raw data into a format ready for persistence
– For multi-record files, this includes separation of file into records
For persistable data, the Ingest Server end point outputs the “Ready to
Store” data to the data store via the Data Access Layer (DAL)

ArchiveSrv
Mbean

IngestSrv
Mbean

URI-Based Raw Data
Repository (HDF5)

1

Data Access Layer (DAL)

2

3

Note: Most of the plug-in work is done in the Ingest Server.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 114

Plug-In Relationship to Data Indexing
Plug-In responsible for extracting the Metadata from the data
Each Ingest Server endpoint passes the Metadata to the
Index Server via the Persist Server

IndexSrv
Mbean

PostgreSQL
Database

IngestSrv
Mbean

1

Data Access Layer (DAL)

3

2

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 115

Plug-In Relationship to Product Server

Product Server allows Clients
to order and subscribe to
visualization products
MicroEngine utilizes data Plug-
Ins to process raw data into
the visualization product

ProductSrv
Mbean

Micro
Engine

3

Subscription

2

1

Plug-In 4

I need pretty
picture.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 116

Plug-In Relationship to Notification
Notification triggers automatic building of visualization products
Auto-build process utilizes Plug-Ins for processing

NotifySrv AutoBldSrv

Mbean Mbean

Micro
Engine

1

3

Subscription

2

3

Plug-In

2

Note: Plug-In utilization is mainly in MicroEngine.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 117

BREAK

6/22/07 Page 118

Plug-In Archive/Build Details

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 119

AWIPS EDEX Project Organization
About This Section

Examines the organization of the ADE’s EDEX code base,
which doubles as a build structure
Outlines a Plug-in for decoding “message” data – as
examples for this section and code examples for the
following sections
– Notes:

A “message” data record is a plain ascii text record consisting of a WMO
header and a record body, while “message” decoding consists of separating
the header and body and parsing the WMO header.
This plug-in illustrates how to create, build, and configure a new data-type
plug-in for EDEX.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 120

AWIPS EDEX Project Organization (cont’d)

ADE EDEX baseline separated into folders to support manual and/or
automated builds
Plug-In code location: Under the Extensions directory. Core Plug-In
support: Under EDEX directory

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 121

AWIPS Plug-In Directory Structure
Each Plug-In contained in a
directory structure under
“trunk/awips/extensions”

Two main branches in the Plug-In
code:
– src/… contains the code of the Plug-In,

any supporting classes, and any uEngine
tasks.

– res/… contains configuration and other
build-related files

Directory structure under “src” defines
the package structure for the Plug-In
– All current Plug-Ins located in

“com.raytheon.edex” package tree

– Additional directories added as needed

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 122

AWIPS Plug-In Directory Structure Considerations
Names of Plug-Ins
– Unique name for each Plug-In
– Always start with “plugin-”
– Name for the “message” Plug-In: “plugin-message”

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 123

AWIPS Plug-In Directory Structure
Considerations (cont’d)

Three build-related files in each Plug-In:
– build-component.properties

Located in the main Plug-In directory
Contains the build dependencies
Plug-Ins normally dependent on “common” and “uEngine”

– client-includes.dat
Located in the main Plug-In directory
Identifies classes to include in the “client” version of the Plug-In

– binding.xml
Located in the “res” directory of the Plug-In
Required only if the Plug-In defines any files that require JiBX-based
serialization

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 124

AWIPS Plug-In Directory Structure
First step in creating a Plug-In:
Create the basic directory and build
structure
– Using Eclipse (or a file system browser),

add basic directory structure for Plug-In
under “trunk/awips/extensions”

– Note Plug-In name, “message,” at the
lowest level of the directory structure

– This structure is created using the Plug-In
creation tool

Next: Create basic build file, build-
component.properties
– In most cases, the required dependencies

are “common” and “uEngine” (as shown)

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 125

AWIPS EDEX Build Files to Modify
Modify these build files when adding a new data type
Plug-In:
– trunk/awips/build/deployments/deployment.properties – add the

Plug-In’s main code directory to the deployment list
– for the “message” Plug-In, this is plugin-message

Note: This topic will be revisited later.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 126

AWIP EDEX Plug-In Jar Structure

Each JAR named to match the Plug-In directory in CM
– CM location for the current METAR Plug-In:

“trunk/awips/extensions/plugin-metar”
– The resulting jar: “plugin-metar.jar”
META-INF directory and MANIFEST.MF generated as part of the
build process

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 127

BREAK

6/22/07 Page 128

AWIPS EDEX Plug-In Architecture

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 129

Makeup of the Plug-In Architecture
The Plug-in Decoder Proxy, which provides run-time access
to the various data-type plug-ins

An (optional) Data Access Object, which provides for storage
of data in the AWIPS Persistence Store

The Java classes needed to perform the tasks of the Plug-In

A Java class providing a data object for each record of the
data type

Build files that control creation of the Plug-In

Configuration files that define the operation of the Plug-In

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 130

Plug-In Architecture:
Data Record Classes

Each data-type record represented internally by a Java class object
called a “Data Record” object
– Data Records extend the PluginDataObject abstract class (which is part of

com.raytheon.edex.db.objects package)
PluginDataObject provides the minimal fields required for EDEX data persistence

Abstract classes in com.raytheon.edex.db.objects package also exist for other
common data objects

Data Record object created by the data-type decoder and used by the
Data Access Layer (DAL) for metadata and data persistence
– DAL provides a layer of abstraction above the data persistence mechanism

that hides the actual implementation from the Plug-In

Note: More on Data Record objects in the next section.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 131

Plug-In Architecture:
Data Access Layer Design

This diagram shows the multi-tier
design approach for AWIPS EDEX.

The test driver and CAVE communicate
with the Data Access Layer (DAL) via
the Product Server and the uEngine.

The DAL provides an interface to the
business layer to decouple data storage
implementation from business logic.
This interface receives update and
query requests. The DAL then
delegates appropriate Data Access
Objects (DAO) to interact with the data
sources. The results are organized and
returned to the business layer via the
data layer interface.

This design enables the user to swap
data sources without affecting the
business layer, although a new DAO is
necessary if the persistence method is
changed.

This diagram shows the multi-tier
design approach for AWIPS EDEX.

The test driver and CAVE communicate
with the Data Access Layer (DAL) via
the Product Server and the uEngine.

The DAL provides an interface to the
business layer to decouple data storage
implementation from business logic.
This interface receives update and
query requests. The DAL then
delegates appropriate Data Access
Objects (DAO) to interact with the data
sources. The results are organized and
returned to the business layer via the
data layer interface.

This design enables the user to swap
data sources without affecting the
business layer, although a new DAO is
necessary if the persistence method is
changed.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

PostGreSQL
Database

M
U
L
E

HDF5
Repository

Plug-Ins

CAVECAVETest
Driver
Test

Driver

D
A
O
s

Metadata
DAO Pool
Metadata
DAO Pool

Data
DAO
Data
DAO

Queries

Scripts

Data Access Layer (Interface)Data Access Layer (Interface)

Ingest*
Service
Ingest*
Service

uEngineuEngine

Product
Service

Product
Service

Auto Build
Service

Auto Build
Service

6/22/07 Page 132

Plug-In Architecture:
The Plug-in Decoder Proxy Class

Plug-In Decoder Proxy class provides interface between the
Ingest Service and the data type decoders
– Ingest Server creates an instance of the Plug-In Decoder Proxy class

Plug-In Decoder Proxy class uses the decoder factory to obtain additional
classes to perform specific tasks, such as file decoding

– Ingest Server uses Plug-In Decoder Proxy class methods to perform
data operations

Data type-specific functionality provided in two ways:
– Implementing Plug-In interfaces
– Configuring the DAL

Note: More on both data type-specific functionality concepts later.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 133

AWIPS EDEX Plug-In Decoder Proxy
Plug-In Decoder Proxy provides a
configurable interface by which an
EDEX Service may obtain the
decoder for a data type

Proxy configuration for a specific
data-type plug-in contained in
“plugin.xml,” which is found in the
Plug-In’s “res/conf” directory
– plugin.xml read by the EDEX

Configuration Factory

– Provides the information that allows
the Plug-In Decoder Proxy to deliver
the correct class(es) for a specific
data type

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 134

Plug-In Architecture:
Plug-In Decoder Proxy Class Design

Methods available in the Plugin class:
– PluginDecoderProxy() – (constructor)

instantiates the class and obtains
supporting class references from the
Plug-In factory

– hasNext() – determines if the data
provided to the constructor has a data
record to decode

– next() – gets the next available
(decoded) data record

– dispose() – cleans up objects contained
in the proxy – must be called before the
class goes out of scope

Note: Method arguments and return
values are as specified in the class
diagram.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 135

Plug-In Architecture:
Plug-In Decoder Proxy Utilization

Ingest Service (IngestSrv)
uses the Plug-in Decoder
Proxy to process various
data types generically
– IngestSrv.process() obtains a

PluginDecoderProxy object to
process the file

– IngestSrv.process() calls the
proxy’s hasNext() method to
determine if there is available
data

– IngestSrv.process() calls the
proxy’s next() method to obtain
a single data record.

Note: Most logging and comments have
been removed to save space.
Note: Most logging and comments have
been removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 136

Plug-In Architecture:
Decoder Proxy/Message Decoder Class Diagram

The Plug-in Decoder Proxy uses an instance of a Message
Decoder to perform the message decoding. Each data-type
Plug-In provides an implementation of IMessageDecoder that
performs the actual decode operations.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 137

Plug-In Architecture:
IMessageDecoder Functionality

IMessageDecoder interface specifies
the methods used to decode a
message and iterate the resulting
records.
The methods specified are:
– setMessage() initializes the decoder with

the message to decode
– hasNext() determines if the message has

a record to decode
– decode() decodes the next record in the

message
– dispose() clean up any resources used

by the decoder

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 138

Plug-In Architecture:
IMessageDecoder Functionality (cont’d)

Each Plug-In must provide a message decoder.
– Plug-In’s message decoder is obtained by the Plug-In Decoder Proxy

using the Decoder Factory’s get (…) method
The Decoder Factory is an instance of the DecoderFactory class.

– Message decoder “lives” in the Plug-in Decoder Proxy. Its methods are
called from that class.

Note that the details of using the data-type specific decoder
are hidden inside the Plug-In Decoder Proxy class and are
not implemented within the data-type Plug-In itself.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 139

Plug-In Architecture:
Abstract Message Decoder

Abstract base class implementing
most of the IMessageDecoder
functionality
– Derives basic fields from the

AbstractDecoder class.
– Most data-type decoding functionality

can be provided by extending the
AbstractMessageDecoder base class

Decoders extending the abstract base
class must ensure that the message
separator is set before any processing
occurs
Decoders must implement the
decode() method – others are provided
in the base class.
In IngestSrv; decoders and decoder
functionality is hidden behind the Plug-
in Decoder Proxy

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 140

Plug-In Architecture:
IMessageDecoder Utilization

Calls to the IMessageDecoder
methods are wrapped within
PluginDecoderProxy methods.
– Proxy’s constructor calls the

decoder’s setMessage() method.
– Proxy’s hasNext() method calls the

decoder’s hasNext() method.
– Proxy’s next() method calls the

decoder’s decode() method.
– Proxy’s dispose() method calls the

decoder’s dispose() method.
Things to note:
– Decoder’s hasNext() method acts as

the controller for the loop processing
multiple records

– Decoder’s dispose() method is
called in a “finally” block.

Note: Most logging and comments have
been removed to save space.
Note: Most logging and comments have
been removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 141

Plug-In Architecture:
IMessageDecoder Example

Note: The setMessage() and hasNext() methods
are provided by the base class.
Note: The setMessage() and hasNext() methods
are provided by the base class.

This example shows the
IMessageDecoder implementation
in Message plug-in. The basic class
code was generated by Eclipse
using the ADE Plug-In Tool.

Code Examples: The following
classes in the AWIPS EDEX
baseline are implementations of
IMessageDecoder:

– GribDecoder

– PirepDecoder

– ObsDecoder

– RadarDecoder

– SatelliteDecoder

This example shows the
IMessageDecoder implementation
in Message plug-in. The basic class
code was generated by Eclipse
using the ADE Plug-In Tool.

Code Examples: The following
classes in the AWIPS EDEX
baseline are implementations of
IMessageDecoder:

– GribDecoder

– PirepDecoder

– ObsDecoder

– RadarDecoder

– SatelliteDecoder

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 142

Plug-In Architecture:
IRecordSeparator Functionality

Defines functionality needed to separate data into individual
records
– Record Separator for a data type is utilized by the Plug-In’s Data

Decoder class to separate a multiple record message into single
records

– Record Separator is normally created when the Data Decoder is
created and populated when the Data Decoder’s setMessage(…)
method is invoked

Each Plug-In for data that contains multiple records must
implement IRecordSeparator
– Implementation details depend on the format of the data file
Two options for a Plug-In for data that contains a single
record:
– Can provide a Record Separator
– Can use RecordSeparatorImpl

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 143

Plug-In Architecture:
IRecordSeparator Design

IRecordSeparator specifies
an “iterator” like interface via
three methods:
– setData() – sets the entire

message into the Record
Separator

– hasNext() – determines if the
message has another record to
process

– getRecord() – returns the next
record in the message

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 144

Plug-In Architecture:
IRecordSeparator Utilization

In our example, the Message
Decoder class uses the
RecordSeparatorImpl class
– Separator is created by the class

constructor.
– Decode() method uses the separator’s

getRecord() method to get the (single)
record in the message.

Note: Most logging and comments have been
removed to save space.
Note: Most logging and comments have been
removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 145

Plug-In Architecture:
IRecordSeparator Utilization (cont’d)

In the example, the Message
Decoder class extends
AbstractMessageDecoder base
class
The base class provides:
– Separator field
– setMessage(…) which calls the

separator’s setData(…) method
– hasNext() which calls the sepatator’s

hasNext() method

Note: Most logging and comments have been
removed to save space.
Note: Most logging and comments have been
removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 146

Plug-In Architecture:
RecordSeparatorImpl

A Java class that provides a Record Separator for a data-
type which consists of files containing single records
– Package: com.raytheon.edex.plugin

All IRecordSeparator methods are implemented
– Calling setData() initializes the class

Prior to calling setData(), hasNext() returns “false”
– Calling getRecord() returns the entire file

Prior to calling getRecord(), hasNext() returns “true”
After calling getRecord(), hasNext() returns “false”

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 147

Plug-In Architecture:
Data Persistence Functionality

Defines the functionality needed to persist the data from a
decoded data message into the EDEX data store
– EDEX uses HDF5 for data persistence

A data-type Plug-In may elect to store data using HDF5
– For Plug-Ins using HDF5 persistence, the Data Record class

implements the HDF5 Persistence interface, IPersistable (part of the
com.raytheon.edex.plugin package)

– IngestSrv utilizes the methods provided by IPersistable to assist in
writing the data to the HDF5 repository.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 148

Plug-In Architecture:
Data Persistence Functionality: IPersistable

IPersistable specifies the functionality needed
to persist data to the HDF5 repository
– getPersistenceTime() returns a Calendar object

representing the insert time of the data
– populateDataStore(…) writes the IPersiable’s

data to a previously created IDataStore object
representing the HDF5 repository

Each HDF5 repository is represented by
class that implements the IDataStore
interface
– IDataStore specifies methods used to access

data in a data store

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 149

Plug-In Architecture:
Data Persistence Functionality: IngestSrv
IngestSrv checks the type of the

data record to determine if the data
is persisted to HDF5

– If the data record implements the
IPersistable interface, the contents
are written to the HDF5 repository
using the HDF5 DAO

Note: The HDF5 DAO’s use of
IPersistable is discussed on the next
slide.

Note: Most logging and comments have been
removed to save space.
Note: Most logging and comments have been
removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 150

Plug-In Architecture:
Data Persistence Functionality: HDF5Dao

The HDF5 DAO’s persistToHDF5(…)
method writes the data to the HDF5
repository
– The data record’s getInsertTime is called

to get the data’s insert time
– The data’s insert time and Plug-In name

are used to get access to the HDF5
repository for the data

– The data record’s populateDataStore(…)
method is called to write the record’s data
to the HDF5 repository

– The data record’s insert time is saved
back to the data record for future use

Note: Most logging and comments have been
removed to save space.
Note: Most logging and comments have been
removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 151

Plug-In Architecture:
IPersistable Example – SatelliteRecord

This example shows how
IPersistable’s methods are
implemented in the Satellite plug-in’s
data record, SatelliteRecord
Code Examples: The following

classes in the AWIPS EDEX
baseline are implementations of
IPersistable:

– BinLightningRecord
– GribRecord
– RadarRecord

Note: Our example Plug-In does not
use HDF5 persistence

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

Note: Class fields, most logging, and comments
have been removed to save space.
Note: Class fields, most logging, and comments
have been removed to save space.

6/22/07 Page 152

Plug-In Architecture:
Data Access Objects

A data-type Plug-In persists meta-
data to the AWIPS II Metadata
database
– In most cases, database persistence

can be handled via the Core DAO
(CoreDao)

If a Plug-In needs special
database handling, e.g., as part of
decoding, it can provide one or
more DAOs
– The specialty DAO should extend

CoreDAO and may override one or
more CoreDao methods

Data Access Objects provided in a
data-type Plug-In are not normally
accessed outside the Plug-In

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 153

Plug-In Architecture:
Data Access Objects - SatMapCoverageDao

The satellite data-type Plug-In includes the SatMapCoverageDao
It provides query methods used by the satellite decoder to obtain
map coverage information from the database
– This DAO provides wrappers for CoreDao methods as well as

convenience methods not provided by CoreDAO
This DAO specifically provides access to the Satellite Map
Coverage data in the EDEX database

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 154

Data Record Objects

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 155

Plug-In Architecture:
Data Record Functionality

Data Records:
– Provide the internal representation of the metadata and data produced

by the data decoder
– Implement the PluginDataObject abstract Java class, which provides

the basic fields required for EDEX data persistence including a field for
the message data

Each AbstractDataRecord implementation:
– Provides a set of fields for the data-type’s metadata

Additional fields may be provided decoded data values that are not part of the
metadata

– Must provide an implementation of the getDecoderGettable() method
– May implement the IPersistable interface (discussed previously)

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 156

Plug-In Architecture:
Data Record Design

This diagram shows the
structure of the
PluginDataObject class
and associated classes
– PersistableDataObject

provides the minimal
functionality required for
database persistence

– SpatialDataObject provides
the basic functionality for
including apatial data in the
data record – subclasses
are provided for point and
area data.

The data Record implementation provides fields, with accessors, for the
data-type specific values

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 157

Plug-In Architecture:
Data Record Utilization

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

This example shows how the
MetarDecoder creates and
starts to populate a
MetarRecord object.

For details on how the
decoding is performed, refer to
the MetarDecoder source
code in the EDEX baseline.

This example shows how the
MetarDecoder creates and
starts to populate a
MetarRecord object.

For details on how the
decoding is performed, refer to
the MetarDecoder source
code in the EDEX baseline.

6/22/07 Page 158

Plug-In Architecture:
Data Record Example

Note: Most logging and comments have been
removed to save space.
Note: Most logging and comments have been
removed to save space.

This example shows the
AbstractDataRecord implementation in
MessagePlug-in.

Note that this class extends
AbstractTextDataRecord since a FooBar
record is an ascii text-based data record.

The basic class code was generated by
Eclipse using the ADE Plug-In Tool.

Code Examples: The following classes in
the AWIPS EDEX baseline are
implementations of AbstractDataRecord:

– GribRecord

– RadarRecord

– SatelliteRecord

– MesowestRecord

– MetarRecord

This example shows the
AbstractDataRecord implementation in
MessagePlug-in.

Note that this class extends
AbstractTextDataRecord since a FooBar
record is an ascii text-based data record.

The basic class code was generated by
Eclipse using the ADE Plug-In Tool.

Code Examples: The following classes in
the AWIPS EDEX baseline are
implementations of AbstractDataRecord:

– GribRecord

– RadarRecord

– SatelliteRecord

– MesowestRecord

– MetarRecord

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 159

BREAK

6/22/07 Page 160

Data Plug-In Configuration

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 161

Plug-In Architecture:
Required Configuration Files

Performance and availability of an EDEX Plug-In
determined by a set of five configuration files:
– plugin.xml. Basic file mapping the Plug-In implementation classes

to the Plug-In for use by the Plug-In Factory
– <plugin-name>-ingest.xml. Defines the Mule ingest end points for

the Plug-In
– binding.xml. Optional file defining JiBX mappings for data objects

in the Plug-In.
– <data-name>.db.xml. File defining PostgreSQL metadata table

structure as required by the Plug-In.
– <data-name>.hbm.xml – File mapping the PostgreSQL metadata

table to the Data Record class for Hibernate.

Note: The plug-in may include multiple .db.xml and .hbm.xml.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 162

Plug-In Configuration:
plugin.xml

pluxin.xml provides the
mapping of the Plug-In’s
components to attribute
names used by the Plug-In
Factory for class creation
XML provides:
– The plug-in name
– The required interface

implementations
– Additional attributes used by

the plug-in

Note: See the other EDEX Plug-
Ins for additional examples.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 163

Plug-In Configuration:
attributes.xml

attributes.xml defines the configuration attribute names for
use by the plug-in
– Name tag contains “ATTRIBUTE_NAMES”
– Other tags may be added as needed

Note: This is an optional configuration file.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 164

Plug-In Configuration:
binding.xml

Binding.xml
defines the
JiBX
bindings for
the Plug-In

This example shows the bindings file for the MessagePlug-in.

Note that most of the fields are inherited from two base classes: AbstactData Record and
AbstractTextDataRecord.

In each “value” tag:
Name attribute defines the field name in the XML.
Field attribute defines the class field to capture and must match the field in the class.
Setting usage to “optional” allows the binding to work on partially populated Classes.

This example shows the bindings file for the MessagePlug-in.

Note that most of the fields are inherited from two base classes: AbstactData Record and
AbstractTextDataRecord.

In each “value” tag:
Name attribute defines the field name in the XML.
Field attribute defines the class field to capture and must match the field in the class.
Setting usage to “optional” allows the binding to work on partially populated Classes.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 165

Plug-In Configuration:
<data-name>.db.xml

<data-name>.db.xml
defines the metadata table
structure for the
PostgreSQL database
Items defined:

The table name
The data class represented
Data retention time
Definition for table columns

This example shows a partial definition of the main database table used for
the METAR Plug-In’s metadata. The child tables are defined in separate
table definitions.

This example shows a partial definition of the main database table used for
the METAR Plug-In’s metadata. The child tables are defined in separate
table definitions.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 166

Plug-In Configuration:
<data-name>.db.xml

Contents of column definition island in the table definition file:
– Name: The name of the column
– columnType: The data type for the column, e.g., integer, varchar
– constraintType: The constraint on the table, e.g., “PRIMARY KEY” or “UNIQUE,”

“none”
– Precision: The size of the field
– Index: Specifies whether an index should be created on this column

Note: Details on creating this file are included in the ADE documentation.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 167

Plug-In Configuration:
<data-name>.hbm.xml

<data-name>.hbm.xml
defines the mapping of
Data Record class to
PostgreSQL database
meta data table for
Hibernate

Note: Details on creating the
Hibernate file are included in
the ADE documentation.

This example is a partial listing of the Hibernate file for the METAR Record
class used by obs Plug-in.
This example is a partial listing of the Hibernate file for the METAR Record
class used by obs Plug-in.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 168

BREAK

6/22/07 Page 169

ADE Plug-In Creation Tool

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 170

AWIPS Plug-In Creation Tool: New With ADE 1.0
AWIPS Plug-In Creation Tool

Implemented as an Eclipse Plug-In
Once installed, may be used like any
other element of the Eclipse IDE
Automates most of the work required
to generate the initial files for a data-
type Plug-In
– Automatically creates the required

directory structure for the Plug-In
– Generates class stubs for the required

Java classes
– Generates initial configuration and build

files

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 171

Installation of ADE Plug-In Creation Tool
Plug-In Creation Tool ships with the ADE EDEX baseline,
located in opt/tools/plugins
– The file: com.raytheon.edex.pluginCreator_1.0.0.jar

To install the Plug-In Creation Tool:
– Copy the jar file into the plugins directory in your Eclipse installation
– Restart Eclipse

When Eclipse restarts, the Plug-in Creation Tool will be
available

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 172

Accessing ADE Plug-In Creation Tool
To access the Plug-In Creation Tool:

Select Show View→Other… from the
Window menu to display the Show
View dialog
On the Show View dialog, type Plugin
Creator in the text box (this will locate
the Plugin Creator icon)
Select the Plugin Creator icon and
click OK. This adds the Plugin Creator
to your Eclipse

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 173

Accessing ADE Plug-In Creation Tool (cont’d)

Move the tool to position it in a convenient
location.
Once positioned, Eclipse will remember the
location, even if you close and reload it.
You will also need to resize the tool, making it
wider, to expose all its functionality.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 174

Creating a Plug-In With the Tool
Enter the eclipse install path
Enter basic Plug-In information
–Organization name and domain

Domain may include dots
–Plug-In name

Enter auxiliary information
–Check “IPersistable” if the Plug-In

will persist data to HDF5
–Check “Create Separator” if the

Plug-In should implement a data
separator.

Note: The message Plug-in, which is a
text based product, does not persist to
HDF5

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 175

Creating a Plug-In With the Tool (cont’d)
Specify the fields for the data
representation:
– Enter the field name and type information
– Click to include in data URI
– Add the field to the plug-in

definition
Caution: Use care when deciding which
fields to include in the data
URI.
– Include enough fields to uniquely identify the

data.

Note: The data URI provides a unique identifier of
the data in the PostgreSQL database, and acts
as the HDF5 pointer for binary data.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 176

Creating a Plug-In With the Tool (cont’d)
For the message Plug-In,
there are two data fields:
header and body. Because
the header uniquely identifies
the message, no other fields
are needed for the data URI.
Once the fields for the data
have been added, use the
browse button to display the
Select Output Path dialog
and select the location to
create the Plug-In.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 177

Creating a Plug-In With the Tool (cont’d)
The Select Output Path dialog
provides a means to browse
for the desired output
directory. Note: The plug-in is
created in a subdirectory of the
directory you select.
For the “message” Plug-In, we
will create the code in the
EDEX extensions directory.
The folder created will be
plugin-message.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 178

Creating a Plug-In With the Tool (cont’d)
Generate the Plug-in code:
– Click the Generate Plugin button

Once the Plug-In has been
generated, close the Plug-In
Creation Tool

Note: In order for Eclipse to pick up the
new code, you will need to refresh the
project display.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 179

Creating a Plug-In With the Tool (cont’d)
Once the plug-in has been created using the tool, any
code needed to provide functionality may be added. This
includes code for any helper classes and for any μEngine
tasks.
One final reminder: The name of the Plug-In must be
added to the deployment properties file
– See AWIPS EDEX Build Files To Modify

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 180

Adding Plug-In to EDEX Ingest

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 181

Plug-In Architecture:
Adding the Ingest End Point

In this section: Details for adding the data-type to the Ingest
component
– Consists of setting up Mule end points to ingest the data

To use the Plug-In for data ingest, add a Mule descriptor to
its ingest configuration file
– <plugin-name>-ingest.xml is located in res/endpoints in the plug-in

directory

<plugin-name>-ingest.xml is generated by the plug-in
creation tool
– Normally, no changes are needed to the tool-generated file

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 182

Plug-In Architecture:
Adding the Ingest End Point

This example shows the
ingest definition for the
message Plug-In as
generated by the Plug-In
tool
Some changes made to the
Ingest specification in TO 8
More details on the modified
specification available in
Module 12; TO8 ADE 1.0
Developer Updates.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 183

Adding uEngine Data-Type Processing

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 184

Plug-In Architecture:
Adding a uEngine Task

A data-type Plug-In that requires special processing may include data-
type specific uEngine tasks
– uEngine tasks extend the abstract ScriptTask class
For basic data retrieval, the uEngine provides many of the tasks needed
to process data
– For ASCII, point data tasks exist to convert the data to XML format for

retrieval
– For blob data such as GRIB data, the uEngine includes tasks for

processing the data and converting it to visualization products
Specialized tasks may be created for specific data types
– Example: For the e-mail message discussed in the homework, it might

be desirable to create a uEngine task that would send the email

Note: Creating a uEngine task is beyond the scope of this tutorial. For more
information, see Module 3, MicroEngine Scripting.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 185

Wrap-Up

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 186

Summary
What we just learned
Future evolution of the Plug-In design
Homework and where to get the solutions

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 187

Resources
On the ADE 1.0 DVD
– Current Plug-In code available for examination in the EDEX baseline
– JavaDoc documentation for Plug-Ins available
– AWIPS EDEX design documents – location TBD
– AWIPS ADE 1.0 Training Materials – location TBD

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 188

Lab Work / Home Work

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 189

Hands-On Exercise: Data Type Plug-In
Instructions
1. Review the code for the Satellite Plug-In.
2. Test the Plug-In by ingesting data and retrieving products.
3. Complete the code for the Message Plug-in.
4. Write a Plug-In to handle “email-like” messages arriving on

EDEX. Assume that each message has two main parts –
the message header and the message body. The message
header will have five semicolon-terminated lines: Date;
sender; addressee; cc address; subject. The body will have
zero or more lines terminating with an end-of-message
token (three equal signs) on a separate line. Each file may
contain multiple messages. (Sample messages appear on
the next slide.)

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

6/22/07 Page 190

Hands-On Exercise: Data Type Plug-In (cont’d)
Sample Messages for the

Final Exercise
1. A complete message. Note

that each header element is
on a separate line.

2. A message with a missing
header element. The
missing element is denoted
by a line containing only a
semicolon.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.01 ADE/CAVE Module 4: Data Type Plug-in

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 5: Service Oriented Architecture (SOA) (rev.1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE05.01

6/22/07 Page 192

Objectives
Understand the architectural pattern of a Service Oriented
Architecture (SOA) service
Understand how services are written
Understand how services are integrated into the system
Understand how to monitor and test an SOA service

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 193

SOA Service Design Pattern:
Wrap the Interface to the ESB/Container

+onCall()
+register()

+process()

Hides Interface Details to Container
Extracts Message
Calls +process() on Return
Reports Exceptions

Registers with JMX for
Remote Monitoring

Does the Work of the Service
Return Puts Message on Outbound
Endpoint

Required for JMX
Management of User-Defined
Attributes

AbstractMessageSrvAbstractSrvMBean

SBNsatIngestSrv

AsciiIngestSrvMBean

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 194

AbstractMessageSrv

+onCall()
+register()

ESB Message Event Handling to Service
Reference to Mule ESB
events

Extracts message out
of Mule ESB event

Executes +process()
Method of sub class

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture
(SOA)

6/22/07 Page 195

SOA’s Service Process Method
Retrieving the message
as a byte[]
Retrieving the message
as a byte[]

Getting a reference to the
Plugin
Getting a reference to the
Plugin

Decoding the file name to get
metadata
Decoding the file name to get
metadata

Putting the store() on the
Outbound Endpoint
Putting the store() on the
Outbound Endpoint

Sending a message to
the Outbound End Point
Sending a message to
the Outbound End Point

SBNSatlngestSrv

+process()

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 196

ingest.xml

Wiring the SOA Service Into the Container

Class reference to
SOA Service implementation

Class reference to
SOA Service implementation

Outbound Endpoint
Virtual memory queue

SEDA scaled

Outbound Endpoint
Virtual memory queue

SEDA scaled

Inbound Endpoint is a ESB
File sniffer with dir reference
Inbound Endpoint is a ESB

File sniffer with dir reference

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 197

start.bat
start

Mule ESB/ Container Startup Reads Wiring

SBNsatIngestSrv
is wired in index.xml

SBNsatIngestSrv
is wired in index.xml

Mule ESB uses library scanning to
build CLASSPATH

(concept borrowed from ANT)

Mule ESB uses library scanning to
build CLASSPATH

(concept borrowed from ANT)

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 198

JMX Console Connects to Mule ESB Runtime
(JMX Is a T05 Capability, But T04 Has Some Basics)

SBNsatIngestSrv
Remote Monitoring Through JMX

SBNsatIngestSrv
Remote Monitoring Through JMX

Connect JMX to Mule
(activeMQ is automatic)
Connect JMX to Mule

(activeMQ is automatic)

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 199

Exercise: Monitoring an SOA Service
SBNsatIngestSRV Monitoring
Startup: Server Process {activeMQ, Mule, Tomcat}
1. Monitor Mule’s log file.
2. Connect JMX console to Mule.
3. Note statistics with regard to SBNsatIngestSRV.
4. Ingest a raw IR satellite file.
5. Look at what happened to the log file and JMX console.

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 200

Extra Credit: Debug SOA Service
Same Exercise as Before but with Step-By-Step

Debugging
1. Attach Eclipse IDE debugger to Mule.
2. Set breakpoint toward the beginning of the +process()

method in SBNsatIngestSrv.
3. Ingest the raw IR satellite file.
4. Watch as the breakpoint is hit.
5. Step through the code from the breakpoint, watching the

variables as they change.

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 6: CAVE-Underlying Framework and
Rendering (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE06.01

6/22/07 Page 202

Objectives
General Introduction to CAVE
Understand How CAVE Renders Geospatial, Vector, and x-y
Data

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 203

Motivation and Goals of CAVE
Minimize GUI infrastructure, maximize reuse
Performance
Extendability

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 204

CAVE: Vision
Bring together the visualization capabilities found in
N-AWIPS, D2D, GFE, FX-C, FX-Net, and the Hydro GUIs in
a common framework
Maximize rendering and framework patterns reuse across
GUI applications to minimize maintenance costs

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 205

CAVE Top-Level Concept

Customization Plug-Ins

Eclipse Rich Client PlatformEclipse Rich Client Platform

RCP Eclipse Plug-Ins

Visualization Core

Raster/Vector Rendering

ESB transport [jms|http|https|soap|ftp|tcp|…]

Enables Local/
Remote Data

Sharing

Enables Local/
Remote Data

Sharing

ACTION Script
Message

Response
Message

Data to Support
Demo2

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 206

Goal 1: Minimize Infrastructure, Maximize Reuse
Developing boilerplate code: Waste of time and effort. Been
done before, and probably better

CAVE utilizes Eclipse Rich Client Platform for its
infrastructure
– Implemented a set of Plug-Ins for Eclipse Rich Client Platform

CAVE in ADE 1.0 has 400 Java Classes in approximately 50 Plug-Ins

Other infrastructure:
– GeoTools for geo-location
– Mule for communication
– Many other Open Source products (vecmath, units, etc.)

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 207

Goal 1: Minimize Infrastructure, Maximize Reuse
Architectural Diagram

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 208

Goal 1: Minimize Infrastructure, Maximize Reuse
Eclipse RCP

Minimal set of Plug-Ins needed to build a rich client
application collectively known as Rich Client Platform

Eclipse Platform

SearchSearch

DebugDebug

HelpHelp

UI IDEUI IDE
LTKLTK

TeamTeam

OSGiOSGi

RuntimeRuntime JFaceJFace

SWTSWT

UIUI

Eclipse RCP

AntAnt

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 209

Goal 1: Minimize Infrastructure, Maximize Reuse
Characteristics of Eclipse RCP Application

Desktop Application: A Thick Client, not a Web browser
application
Runs on multiple platforms using native widgets
– Looks like a Windows App on Windows, looks like a Linux GTK app on

Linux, etc.

Rich UI with consistent metaphor
– Operates like modern applications with which users are familiar
– Tight integration with desktop OS
– Supports “drag and drop,” printing, etc.

Easy deployment
– All platforms can be built simultaneously
– Installation usually no more than copying a folder

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 210

Goal 1: Minimize Infrastructure, Maximize Reuse
Eclipse Technologies Used in CAVE

OSGi and Runtime: Provides plug-in model
UI
– SWT (Standard Widget Toolkit)

Platform-independent native widget toolkit
– JFace (Framework providing higher-level UI abstractions)

Menu bar, tool bar, content area, status line, viewers, actions, …
– Workbench, text, forms, GEF available
Help and User Assistance Mechanisms
– Help (html/xml based, context sensitive, search), Intro, Cheat Sheets
Deployment (Update Manager)
– APIs to programmatically update
Runtime Extension / Extension Point Model
– plugin.xml

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 211

BREAK

6/22/07 Page 212

Goal 2: Performance

Extremely Important: Performance-driven systems in place
today. Replacement technologies should also be
performance driven
CAVE Performance Approach:
– Fully harness the power of current- and future-generation graphics

cards using OpenGL. (Today's graphics cards are several orders of
magnitude faster than CPU at many operations.)

– Use advanced caching and data decimation techniques to make
rendering of large data usable

– Make the application as multi-threaded as possible so that the user is
not actively blocked while waiting for tasks to complete

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 213

Goal 2: Performance
Performance Using Raster Data

Quad-Tree Tiling implemented in HDF5 for Large Raster Data
– Raster data “pre-staged” into tiled levels

Coarsest: Level 0
Least Coarse: level n
Each level twice the resolution of the previous level
Tiles can be any size (although experience shows that 256 x 256 tends to yield good
performance)

– Tiles automatically brought in as needed
Tiles only brought in at the zoom level at which they are applicable
Tiles only brought in when they are over a spatial area currently being viewed

– Tiles retained in memory until resource no longer needed, or space allocated
for tile cache is exhausted

Tiles evicted using a “Least Recently Used (LRU)” algorithm
Two levels of storage: Graphics Card and Memory

– Demo: Tile Loading and Eviction
– Demo: Tile Format on File-system

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 214

Goal 2: Performance
Performance in Vector and Plot Data

Making Vector Rendering Fast
– Use OpenGL concepts for high-speed vector drawing
– Use automatic vector decimation and other algorithms to reduce level of detail

automatically
– Allows for rendering vector data an order of magnitude larger than many

systems
– Demo: Vector Decimation

Performance of Plot Data
– Generate plot data asynchronously, requesting as the user zooms in, rendering

the individual plot offline, and bringing it into the display as it is available
– Demo: Plot Rendering

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 215

Goal 2: Performance
Performance of UI – Eclipse Jobs Enable Multiprocessing

<<Interface>>
Job

+run()

JMSManagerJob

+run()
+getMessage()

SubscriptionMangerJob

+run()
+registerResource()

TextureLoader

+run()
+requestLoad()

PrintServerAction

+run()
MouseInspectAdapter

+run()
+handleDoubleClick()
+handleMouseMove()
+handleMouseHover()

Tiler

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 216

Goal 3: Extendability
Allow CAVE to be extended easily by outside users
As much as possible, allow users to extend by writing their
own Plug-Ins − not by modifying framework
– Accomplished by using Eclipse Extension Points

Example: Defining a new Data Type with a registered file
extension (e.g., “tif”) for TIFF files
– User creates a new Plug-In that defines a resource, and adds a Plug-In

descriptor that registers the “.tif” file extension to their resource
– No modification to core code

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 217

BREAK

6/22/07 Page 218

CAVE Core Data Structure Concepts
Examine a Few of CAVE's Core Data Structures
Resources, Capabilities, and Map Descriptors
– Resources: Describe a “Layer” on the Map
– Capabilities: Interfaces implemented by Resources that provide a

capability
Example: IColorableResource is implemented for resources that can have
its color changed

– Map Descriptors
Contain a set of Resources and properties about the display

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 219

CAVE Resource Structure – ADE 0.1
Similar in Concept to D2D Depictable

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 220

CAVE Resource Capabilities

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 221

CAVE Resource Capabilities
Many (not all) capabilities exposed to the user through the
contextual menu of the legend automatically – if the
Resource implements the interface

Example:

IColorableResource

IOutlineResource

IInspectableResource

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 222

Map Descriptor

The legend is a visual representation
of the map descriptor.

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 223

Exercise: Hands-On Rendering CAVE
Practical Exercise:
– Launching CAVE From Source Baseline
– Imaging Resources in CAVE

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 224

Exercise:
Launching CAVE From the Baseline

1. From inside Eclipse, locate the “com.raytheon.viz” project
2. Expand the project (click the triangle)
3. Double click on viz.product

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 225

Exercise:
Launching CAVE From the Baseline (Cont’d)
4. After the description

page loads, click on
the “Launch the
Product” blue
hyperlink.

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 226

Exercise:
Imaging Resources in CAVE

Before modifying code, we will learn how to open up and
manipulate a few resources in CAVE.

Demo/Exercise: CAVE GeoTIFF Demo
1. Open CAVE
2. File->Open GeoTIFF
3. Open “test.tif”
4. Right click on Legend and experiment with the capabilities: Brightness

(inside Imaging), Contrast (inside Imaging), and Visibility.

AWP.TRG.SWCTR/TO6.ADE/CAVE-06.01 ADE/CAVE Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 227

LUNCH

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 7: CAVE-User Interface (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE07.01

6/22/07 Page 229

Objectives
CAVE baseline orientation
Add functionality by modifying plugin.xml
Add a new menu item and custom resource

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 230

Baseline Orientation
50 Plug-Ins in present CAVE environment
– Each with its own project in Eclipse
– Each built independently (although some Plug-Ins depend on others)

Some important CAVE Plug-Ins:
– Core Plug-In: Provides rendering and infrastructure
– User interface Plug-In: Provides core user interface capability
– Drawing & collaboration CAVE Plug-In: Provides drawing and

collaboration support
– Several Open Source Java projects that have been repackaged as

Plug-Ins (org.jibx, org.geotools, etc.)

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 231

Important Capability Plug-In Packages

Plug-In Description
com.raytheon.viz.geotiff Support for the GeoTIFF geospatial imagery standard
com.raytheon.viz.shapefile Support for the Shapefile geospatial vector standard

com.raytheon.viz.pointdata Support for pointdata plotting
com.raytheon.viz.volumebrowser Support for the volume browser UI
com.raytheon.viz.grid Gridded data Rendering
com.raytheon.viz.radar Radar Rendering

com.raytheon.viz.satellite Satellite Rendering

com.raytheon.viz.ui.tools* Provides map interactions

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 232

Open Source Repackaged Plug-Ins

Plug-In Description
ncsa.hdf5 Provides HDF5 Capabilities
net.sf.ehcache LRU Caching support
org.apache.activemq JMS messaging support
org.apache.batik – SVG rendering
org.apache.commons* various Apache utilities
javax.units Unit Conversions
javax.vecmath Vector Math
javax.media.opengl OpenGL Support
org.geotools Geotools Geospatial Library
org.jivesoftware.smack XMPP Client for Collaboration
ncsa.hdf5 – Provides HDF5 Capabilities

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 233

Eclipse Plug-In XML
An example of plugin.xml (from core):

<extension
point="com.raytheon.viz.core.resource">

<resource
class="com.raytheon.viz.core.rsc.shp.ShapefileResource"

factoryClass="com.raytheon.viz.core.rsc.shp.ShapefileFactoryAdapter"
name="ShapefileResource">

<fileType
fileExtension="shp"
name="Shapefile"/>

</resource>
</extension>

This extension registers the Shapefile type to the
ShapefileResource (and the .shp file extension).

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 234

Eclipse Plug-In XML (cont’d)
Another example from Drawing's plugin.xml:

<action
class="com.raytheon.viz.drawing.WeatherSymbolTool"
icon="icons/thunderstorm.gif"
id="com.raytheon.viz.drawing.WeatherSymbolTool:17"
label="Thunderstorm"
state="false"
style="radio"
toolbarPath="drawing/g1"
tooltip="Thunderstorm"/>

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

This code adds the Weather Symbol tool to
the toolbar as the Thunderstorm tool. Note
the “:17” at the end. This corresponds to the
17.svg in basemaps.

6/22/07 Page 235

BREAK

6/22/07 Page 236

Exercise: Plug-In XML

Objective: Add an entry to plug-in xml to add another symbol
1. Modify plugin.xml by adding another <action> block (copy the

thunderstorm block).
2. Point to testSymbol.svg and testSymbol.gif instead of 17.svg and

17.gif.
3. Give it a meaningful label and tooltip.

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 237

Exercise:
Creating a Custom Imaging Resource

Based on some of the capabilities we've experimented with
in CAVE, we'll add a new item to the “Add Layer” menu
containing our GeoTIFF resource, with custom brightness
and contrast settings.
1. Save a bundle using the “Save Bundle” item in the file menu.
2. Open the bundle XML using your favorite text editor
3. Clear the screen
4. Load the modified bundle
5. Verify the bundle matches what you expect

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 238

Exercise:
Creating a Custom Imaging Resource (Cont’d)
6. Once you have a bundle that you like:

– Copy the bundle file to cave/etc/staticMenu/Demos.
– Restart CAVE. The menu item should show up in the Add Layer

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 239

References: Eclipse
Eclipse RCP home page

http://eclipse.org/rcp
http://eclipse.org/community/rcp.html
News://news.eclipse.org/eclipse.platform.rcp

Books on Eclipse
Eclipse Rich Client Platform by Jeff McAffer
SWT: The Standard Widget Toolkit, Vol. 1 by Northover

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

news://news.eclipse.org/eclipse.platform.rcp

6/22/07 Page 240

BREAK

6/22/07 Page 241

Additional Information
Books
– Patterns of Enterprise Application Architecture: Fowler
– Enterprise Integration: Patterns Hohpe
– Lucene in Action: Gospodnetic
– Hibernate in Action: Bauer
– Enterprise Service Bus: Chappell {Sonic ESB slant}
– SVG for Web Designers: Jason…
– SVG Essentials: Eisenberg
– Spring in Action: Walls
– Lighter, Faster, Java by Spring inventor
– Eclipse (extending and writing plug-ins …)
– Xdoclet in Action: Walls
– ANT – developers handbook
– Junit in Action: Massol
– Java 2D Graphics: Knudsen

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 242

Additional Information (cont’d)
Links
– Mule ESB + SPRING: http://mule.codehaus.org/
– Subversion CM: http://subversion.tigris.org
– ECLIPSE IDE framework & plug-ins: http://www.eclipse.org
– ActiveMQ JMS broker: http://www.activemq.org
– PostgreSQL RDBMS: http://www.postgresql.org
– JBossCache: http://www.jboss.org/products/jbosscache
– RHINO JS scripting: http://www.mozilla.org/rhino
– MINA: http://directory.apache.org/subprojects/network/index.html
– Batik SVG tools: http://xml.apache.org/batik
– Hibernate relational to object mapping: http://www.hibernate.org

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

6/22/07 Page 243

Additional Information (cont’d)
Wx-related projects
– Unidata NetCDF
– VisAD
– IDV
– OpenGIS/GeoTools

AWP.TRG.SWCTR/TO6.ADE/CAVE-07.01 ADE/CAVE Module 7: CAVE-User Interface

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 8: CAVE Visualization Plug-Ins (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE08.01

6/22/07 Page 245

Prerequisites/Objectives
Prerequisites
– Familiarity with CAVE baseline (TO4 Training)
– Familiarity with Java and Eclipse
– Exploration of the CAVE source code baseline
– ADE 1.0 installed

Objectives
– Understand the mechanisms required to extend CAVE
– Write a new Plug-In to extend CAVE functionality

Estimated Time: 2 hours

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 246

Introduction to Extending CAVE

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 247

CAVE Extension Mechanisms
Mechanisms for extending CAVE
– New Resource

Provides the ability to create a new renderable layer or data type
– New Toolbar item

Facilitates launching an action or activating a modal tool
– New Menu item

Facilitates launching an action
– New Editor

Provides a mechanism for creating custom interactions in the main pane

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 248

Extension Mechanism: New Resource
A new resource that provides
– The ability to visualize a new datatype
– The ability to draw to screen (see AcetateLayer)

Drawing resources
Visualizations for interactions

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 249

Resource Extension Example: WarnGen
WarnGen
– Actually contains two of our extension types

A new layer and
An action that is attached to a toolbar button

– Layer provides a way to render the manipulated warning/watch on the
map:

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 250

Extension Mechanism: Toolbar Item
Toolbar item
– Extends AbstractTool
– Allows any sort of action to run

Mouse interaction
► By enabling a mouse handler

Example: PanTool
Pop-up window
► By creating a Dialog
► Example: Collaboration Login

Floating Palette
► By creating a Modeless dialog
► Example: WarnGen

Custom code
– Possible to run as a modal (state-based) or non-modal

Modal: Pan Tool . . . Non-Modal: Loop Preferences Dialog
To run modal, toolbar item should be set as style “toggle” and extend abstract class
com.raytheon.viz.ui.tool.AbstractModalTool

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 251

Toolbar Extension Example: WarnGen
WarnGen toolbar action
– Complicated
– Actually provides multiple types of

interactions, e.g.:
Enables a mouse handler that allows the
user to draw and manipulate warnings on
the map. The handler interacts with the
warning layer, which actually draws the
warning
Displays a pop-up window that displays
the warning parameters.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 252

Extension Mechanism: Menu Items
Nearly identical to toolbar
– Example: Open Shapefile

Opens a dialog box (actually a Wizard)

Note: In existing CAVE baseline, menus are contributed through
Java Code, not through Eclipse extensions. This will change
during future TOs to allow more flexibility.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 253

Extension Mechanism: New Editor
Used to display radically different kind of data
(non map-based)

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 254

BREAK

6/22/07 Page 255

Exercise: Extending CAVE

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 256

Creating a New Plug-In
In this example, we create a Plug-In that extends CAVE in the

two most common ways (a toolbar action and a resource).
First, we create a simple renderable resource that displays a
rectangle on the screen over a predefined area.
Then, we create an example toolbar action that adds the new
layer to the map.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 257

Getting Started
Creating a new project
Setting up environment options
Adding your Plug-In to the build distribution

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 258

Creating a New Project in Eclipse
1. From the File menu, choose New->Project.

2. Choose “Plug-in Project.”

3. Click “Next >.”

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 259

Creating a New Project in Eclipse (cont’d)
4. Set Project name to: gov.noaa.cave_training.

5. Click “Next>.”

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 260

Creating a New Project in Eclipse (cont’d)
6. Click “Finish.”

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 261

Setting up the Project Environment
1. From the main view in Eclipse, choose the recently created

project. Expand it, and the META-INF directory.
2. Double click on the MANIFEST.MF file. Choose the

“Dependencies” tab. The following screen appears:

3. Add
– com.raytheon.viz.core
– com.raytheon.viz.libs
– com.raytheon.viz.ui

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 262

Adding to the Project Build
Now, add the new Plug-In to the CAVE product so that is

included in the build.
1. Inside of the com.raytheon.viz plugin, find “viz.product” and

double click on it. The following screen appears:

2. Choose “Configuration.”

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 263

Adding to the Project Build (cont’d)
1. Click “Add.”

2. Add the
gov.noaa.cave_training
Plug-In.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 264

Creating a New Resource
1. Create a new class:

– gov.noaa.cave_training.MyResource.
– From inside the gov.noaa.cave_training project, expand the “src”

grouping and select the gov.noaa.cave_training package.
– Right click on the package and choose New->Class.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 265

Creating a New Resource (cont’d)
2. Fill out the class template as shown in this example.

3. Click Finish.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 266

Creating a New Resource (cont’d)
Use Eclipse as an aid in filling out the method headers:
– We only need to implement a few select methods:

getName (determines the name on the legend):

public String getName() {
return "My Resource";

}

isApplicable (hint that determines if rsc should be drawn):

public boolean isApplicable(PixelExtent extent) {

return true;
}

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 267

Creating a New Resource (cont’d)
paint(): (using methods in the IGraphicsTarget passed in as an argument to
the paint method, draw to the screen):

public void paint(IGraphicsTarget target, PixelExtent extent,
double zoomLevel, float alpha) throws VizException {

target.drawLine(0, 0, 1000, 1000, new RGB(255,0,0), 1.0f);
}

– In this example our resource simply draws a line from screen
coordinate (0,0) to screen coordinate (1000, 1000) using the color red,
with a 1 point line width.

– In real resources, the IMapDescriptor is used to translate map/resource
coordinates into screen coordinates.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 268

Creating a New Resource (cont’d)
We’ve now created a resource, but this type will not be
utilized until an action is created to instantiate it.
– There is no hook for CAVE to ever create our resource.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 269

Add Toolbar Item Code
1. Create another new class:

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 270

Add Toolbar Item Code (cont’d)
2. Fill out the method runTool:

protected void runTool() {

try {
MyResource myResource = new MyResource();

AbstractEditor editor = ((AbstractEditor) VizApp.getCurrentEditor());

editor.getDescriptor().add(myResource);

editor.refresh();
} catch (WrongProjectionException e) {

e.printStackTrace();
}

}

Note: This code instantiates our resource, adds it to the list of map
resources, and refreshes the screen.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 271

Adding a Toolbar Action
We have our action class, but it will never be called unless

Eclipse is made aware of it.
We will notify Eclipse to expose our Action in the form of a
toolbar item
We do this by adding XML to our plugin.xml in our Plug-In

1. Double click on MANIFEST.MF in our project.

2. Choose the Extensions tab.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 272

Adding a Toolbar Action (cont’d)
3. Create a new extension that extends

“org.eclipse.ui.editorActions” by clicking on Add.
4. It should activate against the editor

“com.raytheon.viz.ui.map.GLMapEditor.” (The code we
wrote was designed to interact with it.)

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 273

Adding a Toolbar Action (cont’d)
5. Add the action by right

clicking on the editorAction
and choosing New->action.

6. Fill in: name, class.
7. Set toolbarPath to

“tools/g3.” Note: This is a
grouping placeholder. Tools
specifies the main toolbar,
g3 specifies the third
grouping (from left to right).

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 274

Run Our Example
1. From the viz base plugin, find viz.product.
2. Choose “Launch the product” from the Overview tab.

We should now have an action on the toolbar that
we can click.

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 275

Run Our Example (cont’d)
Our toolbar
button

Action when
button is clicked

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 276

Wrap-Up

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 277

Summary
Covered the basics on how to create a simple resource and
action to extend CAVE
Learned that adding menu items is extremely similar to
adding a toolbar
Extending new Editors for certain types of data is possible;
nevertheless, developers are encouraged to use the built-in
editors as much as possible

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 278

Resources
On the ADE 1.0 DVD
– Current code available for examination in the CAVE baseline
– JavaDoc documentation available

AWP.TRG.SWCTR/TO6.ADE/CAVE-08.01 ADE/CAVE Module 8: CAVE Visualization Plug-Ins

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 9: Installation/Deployment (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE09.01

6/22/07 Page 280

Prerequisites/Objectives
Prerequisites
– Root access. Only necessary if installing to a directory other than the

user’s home directory
– VMWare Player installed on target machine. Only necessary if the

VMWare image will be used, instead of installing EDEX.

Objectives
– Install the EDEX Services and CAVE Application to a Supported

Platform

Estimated Time: 1 hour

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 281

EDEX/Cave Installation
CAVE application and EDEX services installed using two
separate installers
– Each installer can install all files to the user’s home directory.

Installation can occur in any directory if root access is available to the
installer.

– EDEX can be run as a VMWare image. This image is a set of files and
is available in the distribution. This option is available for use on
Windows; CAVE can interact with a running VMWare instance.

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 282

EDEX Installation (Linux)
EDEX installer available for use on RHEL 4.2
– On the start screen, select Next to proceed

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 283

EDEX Installation (Linux) (cont’d)
– Select Next on the information screen

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 284

EDEX Installation (Linux) (cont’d)
– Accept the license agreement and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 285

EDEX Installation (Linux) (cont’d)
– Enter the installation path (or browse to it) and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 286

EDEX Installation (Linux) (cont’d)
– Select which components to install for the ADE
– Only the EDEX Server is required. Select Next to continue

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 287

EDEX Installation (Linux) (cont’d)
– Set the address of the PostgreSQL install, the port number to listen on,

the path to store the PostgreSQL tablespaces and user/group
information for the non-privileged user

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 288

EDEX Installation (Linux) (cont’d)
– Enter the directory to store the HDF5 data and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 289

EDEX Installation (Linux) (cont’d)
– Select the shortcuts to install and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 290

EDEX Installation (Linux) (cont’d)
Installation will begin, and its progress will be displayed
– When complete, select the Next button

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 291

EDEX Installation (Linux) (cont’d)
PostgreSQL installation will begin
– When complete, select the Next button

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 292

EDEX Installation (Linux) (cont’d)
Installation is complete
– Select Done to exit the installer

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 293

EDEX Installation (VMWare Player)
EDEX VMWare image requires use of VMWare Player (1.0.3)
– Locate the VMWare image on the distribution
– Once located, start the VMWare player and open the file

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 294

EDEX Installation (VMWare Player) (cont’d)
VMWare Player will run the image
EDEX Server available for use from the CAVE application

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 295

CAVE Installation
CAVE installer available for use on RHEL 4.2 and
Windows XP
–On the start screen, select Next to proceed

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 296

CAVE Installation (cont’d0
–Select Next on the information screen

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 297

CAVE Installation (cont’d)
–Accept the license agreement and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 298

CAVE Installation (cont’d)
–Enter the installation path (or browse to it) and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 299

CAVE Installation (cont’d)
CAVE is a required component
–Select Next to continue

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 300

CAVE Installation (cont’d)
–Specify the address of the EDEX server and the location

of the HDF5 files
–Select Next to continue

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 301

CAVE Installation (cont’d)
Installation is complete
– Select Done to exit the installer

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.01 ADE-CAVE Module 9: Installation/Deployment

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 10: CAVE Menu Creation (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE10.01

6/22/07 Page 303

Prerequisites/Objectives
Prerequisites
– Familiarity with CAVE baseline (TO5 Briefing)
– Familiarity with Java and Eclipse
– Exploration of the CAVE source code baseline
– ADE 1.0 installed

Objectives
– Describe the changes in menu architecture in TO6
– Provide an example of creating a new menu in CAVE

Estimated Time: 1 hour

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 304

Introduction to CAVE Menus

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 305

CAVE Menus
Previous versions of CAVE defined menus in Java using
Eclipse 3.2
– Not flexible enough, not dynamic enough

Eclipse 3.3: Far more flexible and dynamic menu capability
– Although currently in a beta state, the benefits of 3.3 architecture are

dramatic. Therefore, we chose to develop TO6 baseline against a pre-
release version of 3.3

– New approach has flexible ways of defining and placing menus,
dynamically decorating menus, and controlling visibility aspects

– ADE 1.0 version of CAVE built on the Eclipse 3.3m7 release

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 306

CAVE Menus (cont’d)
In CAVE, we primarily leverage the existing Eclipse 3.3 menu
capability
– Powerful capability; not many extensions needed

Example of menu extension:
<extension

point="org.eclipse.ui.menus">
<menuContribution

locationURI="menu:file?after=afterNewGroup">
<command

commandId="com.raytheon.viz.shapefile.shapefileImport"
label="Import Shapefile..."
style="push">

</command>
</menuContribution>

</extension>

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 307

CAVE Menus (cont’d)
Important points
– dataURI. Provides capability for more precise placement of menus.

Optional parameters “before” and “after” allow menu placement relative
to other menus, menu items, and arbitrary group markers.

– Commands. Menu items tied to commands rather than concrete code,
which allows for reuse of menu items in different contexts. Also
decouples execution logic from menu presentation.

– Command Parameters. Optional parameters to commands allow
menu items to pass unique parameters to the command handler logic.
Allows a single menu handler to service multiple menu items with
different results.

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 308

CAVE Menus (cont’d)
In addition to menus, a developer must define “commands”
and “handlers”
– Commands. Abstract concept of an action (no implementation)
– Handlers. Implementation of an action

Example:
<extension

point="org.eclipse.ui.commands">
<command

id="com.raytheon.viz.shapefile.shapefileImport"
name="Shapefile Import">

</command>
</extension>

<extension
point="org.eclipse.ui.handlers">

<handler
class="com.raytheon.viz.shapefile.action.ShapefileImportAction"
commandId="com.raytheon.viz.shapefile.shapefileImport">

</handler>
</extension>

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 309

CAVE Menus (cont’d)
Handler interface example
public class ShapefileImportAction extends AbstractHandler {

@Override
public Object execute(ExecutionEvent arg0) throws ExecutionException {

ShapefileWizard wizard = new ShapefileWizard();
WizardDialog dialog = new WizardDialog(VizApp.getCurrentEditor()

.getSite().getShell(), wizard);
dialog.create();
dialog.open();
return null;

}

}

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 310

Exercise: Creating a New Menu Item

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 311

Exercise:
Creating a New Menu Item

In this example, we define a new CAVE Plug-In that defines a
menu in the new structure. We will:
– First: Create an action class that defines a specific action
– Second: Create the command and handler XML to tie into the action
– Third: Create the menu itself in XML

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 312

Exercise: Creating a New Menu Item
Getting Started

Create Plug-In “gov.noaa.menu_example”

Click “Next”

Click “Finish”

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 313

Exercise: Creating a New Menu Item
Getting Started (cont’d)

To allow the new plug-in to participate
in the plug-in environment, add the
newly
created plug-in to the
feature.xml

In com.raytheon.viz.awips,
open feature.xml, and choose the
Plug-Ins Tab

Click “Add..”

Add the newly created Plug-In, and
save the configuration

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 314

Exercise: Creating a New Menu Item
Creating the Action Class

Create DemoActionHandler

Extend AbstractHandler

Generate comments

Finish

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 315

Exercise: Creating a New Menu Item
Creating the Action Class (cont’d)

public class DemoActionHandler extends AbstractHandler {

/* (non-Javadoc)
* @see
org.eclipse.core.commands.AbstractHandler#execute(org.eclipse.core.comma
nds.ExecutionEvent)
*/

@Override
public Object execute(ExecutionEvent arg0) throws ExecutionException {

Shell shell = Display.getCurrent().getActiveShell();

MessageDialog.openInformation(shell, "Hello", "This was triggered by
"

+ arg0.toString());
return null;

}

}

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 316

Exercise: Creating a New Menu Item
Building the Command XML

Using the Eclipse plug-in
manifest editor:

Create org.eclipse.ui.
command

Create “Do Event”

<extension
point="org.eclipse.ui.commands">

<command
id="gov.noaa.menu_example.command1"
name="Do Event">

</command>
</extension>

Builds the XML:

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 317

Exercise: Creating a New Menu Item
Creating the Handler XML

Create
org.eclipse.ui.handlers

Set commandId to match
command created
previously

Point class to
DemoActionHandler class

<extension
point="org.eclipse.ui.handlers">

<handler
class="gov.noaa.menu_example.DemoActionHandler"
commandId="gov.noaa.menu_example.command1">

</handler>
</extension>

Builds the XML:

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 318

Exercise: Creating a New Menu Item
Creating the Handler XML (cont’d)

Create org.eclipse.ui.menus

Create menuContribution:
menu:org.eclipse.ui.main.menu?after=File

Create command
– Set Label “Hello World”
– Match commandId to previously

created command

Builds the XML:
<extension point="org.eclipse.ui.menus">

<menuContribution
locationURI="menu:org.eclipse.ui.main.menu?after=file">

<command commandId="gov.noaa.menu_example.command1"
label="Hello World">

</command>
</menuContribution>

</extension>
AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 319

Wrap-Up

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 320

Summary
Eclipse 3.3 provides support for menu placement and
dynamic menus that is far superior to previous Eclipse
incarnations
Best reference: The (forthcoming!) Eclipse 3.3 documentation

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 321

Resources
On the ADE 1.0 DVD
– Current code available for examination in the CAVE baseline
– JavaDoc documentation available

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.01 ADE-CAVE Module 10: CAVE Menu Creation

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 11: Localization (rev. 1)

February 14, 2008
AWP.TRG.SWCTR/TO6.ADE/CAVE11.01

6/22/07 Page 323

Prerequisites/Objectives
Prerequisites
– Familiarity with CAVE baseline
– Familiarity with Java and Eclipse
– Exploration of the CAVE source code baseline
– ADE 1.0 installed

Objectives
– Introduce the localization concepts in ADE 1.0
– Describe the new localization process

Estimated Time: 1 hour

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 324

General Localization Approach
Localization procedure should occur at startup
– CAVE localization is simple: Go into preferences, choose a new

localization, and restart CAVE
– EDEX localization is simple: Choose a configuration during the

installation process
[Note: In the future, a technique to change server localization after installation

may be provided (likely of very limited value).]

Requires a different approach to data:
– Less subsetting required because CAVE can work with much larger

datasets
Example: No longer necessary to create a unique localized version of a
state’s shapefile

– Every site should work from the master set of data when possible.
Subsetting, if required, should occur on the first data access (in the
regular processing procedure)

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 325

Localization Overview
Three major localization components in ADE 1.0
– Localization service (present on the EDEX server)

Stores localization preferences for CAVE
– CAVE Localization Preferences

Contains all of the localization preferences for the workstation
– EDEX Localization Preferences

Stores primarily site-specific configuration options
Mostly related to system configuration, so “relocalizing” – although useful
from a testing perspective – is likely to be of limited use in a deployment
sense

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 326

Localization Overview

<configuration>
<textureCardPreference>128</textureCardPreference>
<textureMemoryPreference>384</textureMemoryPreference>
<framesPerSecondPreference>25</framesPerSecondPreference>
<tileBoundaries>false</tileBoundaries>
<connectionMethod>jms</connectionMethod>
<jmsServerAddress>tcp://localhost:61616</jmsServerAddress>
<dataDirectory>/awips/opt/data/hdf5</dataDirectory>
<fontMagnification>1.0</fontMagnification>

</configuration>
Base

Site

User

<configuration>
<siteName>KOAX</siteName>

<siteFullName>Omaha</siteFullName>
<siteType>WFO</siteType>

<dataDirectory>/oax-awips/opt/data/hdf5</dataDirectory>

</configuration>

Site:

<configuration>
<fontMagnification>1.25</fontMagnification>

</configuration>

User:

Base:

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 327

CAVE Localization Preferences
Eclipse already has a built-in concept of preferences.
So why change?
– Default Eclipse preferences have no concept of base, site, and user

localization – just a single level
– There is no concept of preference synchronization – changing an option

on one workstation doesn't will not change it on other workstations
– Finally . . . We are continuing to use Eclipse preferences; we are just

extending their existing capabilities
Instead of using the Eclipse preference store, preferences are now stored in
an easily accessible XML format

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 328

Localization in CAVE
Basic Concept
– Your currently logged-in Linux (or Windows) username determines your

user context
However, this could become a manual selection process if necessary

– The site choice could be predefined for an installation, but easily
changed in Preferences

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 329

Localization in CAVE
At start-up, CAVE will contact the localization service
Some potential synchronization items
– Preferences

Example: Site name, local grid windows
– Menus

Example: Site-specific data menus
– Data

Example: Colormaps, parameter mappings, etc.
– Future

Custom datatype plug-ins (custom code!)

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 330

Localization in EDEX
Because localization primarily occurs at the workstation (to
facilitate the possibility of servicing multiple locales with a
single server configuration), EDEX localization is primarily
system configuration-based

Configuration files split into two parts
– Base: Contains the stock configuration values
– Site: Contains any values that the site chooses to override for its locale

Note: Site files may be empty, indicating that the default system configuration
should be used.

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 331

Localization in EDEX

Note that same filename appears
in “base” and “site” contexts

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 332

Summary
Localization provided through two simple, unified interfaces
– Configuration for the server
– Localization for the client, with server synchronization capability

Localization provides a multi-tiered configuration
– Base, Site for Server
– Base, Site, and User for Client

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

6/22/07 Page 333

Resources
On the ADE 1.0 DVD
– Current code available for examination in the CAVE base-line
– JavaDoc documentation available

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.01 ADE-CAVE Module 11: Localization

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization Environment

(CAVE)

Module 12: TO8 ADE 1.0 Developer Updates

February 14, 2008

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00

6/22/07 Page 335

Objectives
Provide updates to previously covered developer topics
including
– Modification to EDEX Ingest data flow and impact to data-type plug-in

development
– Modification to EDEX Data Access Layer and impact to data-type plug-

in development
– Modification to EDEX Data Base Definition pattern and impact to data-

type plug-in development
– Modifications to the EDEX Plug-in Creation Tool
– Additions to the AWIPS II installers
– Preview of upcoming training and capabilities

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 336

Revised Ingest Data Flow

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 337

Modified EDEX Ingest Data Flow
Existing Ingest Data Flow was causing memory-related
problems
– This is critical to system stability in the future.
For TO8, EDEX Ingest DATA Flow is simplified and
standardized
Standardized: All data initially handled by a staging service to
facilitate automated load balancing in a clustered
environment
Standardized: All data passes through an archive service to
allow archiving of data for future playback
Simplified: Ingest and persistence services combined into a
single service
Simplified: Standardization of data flows simplifies the
configuration of data endpoints

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 338

Ingest Data Flow Delivered in TO 6

Features separate mule endpoints for:
– Reading data files (StagingSrv)
– Decoding the data (IngestSrv)
– Saving Data to HDF-5 (PersistSrv)
– Writing meta-data to the database (IndexSrv)

Not all data processed by PersistSrv

Index Persist

Data Access Layer

Plug-In capabilities are used by the various EDEX services (in red)

IngestSrv PersistSr
vStagingSrv

Additional
Processin

g

IndexSrv

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 339

Ingest Data Flow Delivered in TO 8

New service (ArchiveSrv) added to provide archiving of
inbound data
IngestSrv now handles both decoding of data and
persistence to HDF-5 based data store
StagingSrv, ArchiveSrv and IngestSrv have a separate end-
point for each data type

Index Persist

Data Access Layer

Plug-In capabilities are used by the various EDEX services (in red)

ArchiveSrv IngestSrvStagingSrv

Additional
Processing

IndexSrv

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 340

TO 8 EDEX Ingest Services
Service Description

StagingSrv Listens on an SOA endpoint for data and moves the data to working
directory on a network shared device. Initially places file path on JMS queue
to allow cluster-based processing.

ArchiveSvr Listens to JMS queue for available work. Copies files from working directory
to archive directory. Returns file path to JMS queue for further processing.

IngestSrv Listens to JMS queue for available work. Reads file from working directory
and decodes file contents. Persists certain binary data to HDF-5 archive.
Passes metadata to JMS queue for further processing.

IndexSrv Listens to JMS queue for available work. Saves the metadata extracted
from the ingested data to PostgreSQL database for client retrievals. Passes
meta-data to JMS queue for further processing.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 341

Data Flow Impact
First three stops of the modified data flow configured in a
single XML file in each data-type plug-in
– XML file is the xxx-ingest.xml file, located in the “res/endpoints”

directory of the plug-in (xxx represents the data type, e.g. satellite)
[Note: See next few slides for the default configuration for the satellite
plug-in.]

Final stop of the data flow configured in the Index Server’s
configuration file, index.xml
– This file is located in “opt/esb/conf”

All configuration files located in the EDEX baseline in the
ADE

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

Demo: Use Eclipse file
browser to show location.

6/22/07 Page 342

satelite-ingest.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mule-configuration PUBLIC "-//SymphonySoft //DTD mule-configuration XML V1.0//EN"

"http://www.symphonysoft.com/dtds/mule/mule-spring-configuration.dtd">

<mule-configuration version="1.0">
<model name="edex" type="seda">

<!-- Endpoint to stage Satellite data -->

<!-- Endpoint to archive Satellite data -->

<!-- Endpoint to ingest Satellite data -->

</model>
</mule-configuration>

This is the basic SOA configuration
file. Content represented by the three
comments is shown on the next three
slides.

Add configuration for endpoints.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 343

satelite-ingest.xml (cont’d)
<!-- Endpoint to stage Satellite data -->
<mule-descriptor

name="Awips.Edex.Service.StagingSrv-satellite"
singleton="true"
implementation="com.raytheon.edex.services.StagingSrv
outboundEndpoint="jms://ar/sat">

<inbound-router>
<endpoint name="sbnSatIngestEndpoint“

address="file://../../data/sbn/sat/?transformers=NoActionTransformer">
<properties>

<property name="moveToDirectory“
value="../../processing" />

</properties>
</endpoint>

</inbound-router>
<threading-profile maxThreadsActive="1" maxThreadsIdle="1" />

</mule-descriptor>

This is configuration for the satellite
staging service. It is configured to
“sniff” a directory and move each file
to the working directory.

Outbound JMS queue. Inbound source directory.

Move to working directory.

Single instance used for this end point.

EDEX Class handling message.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 344

satelite-ingest.xml (cont’d)
<!-- Endpoint to archive Satellite Data -->
<mule-descriptor

name="Awips.Edex.Service.ArchiveSrv-satellite"
singleton="false"
implementation="com.raytheon.edex.services.ArchiveSrv"
outboundEndpoint="jms://cp/sat">

<inbound-router>
<endpoint name="AR-Sat" address="jms://ar/sat" />

</inbound-router>
<threading-profile maxThreadsActive="4" maxThreadsIdle="4" />
<properties>

<property name="pluginName" value="SATELLITE" />
<property name="archiveDirectoryLocation"

value="../../data/archive/sat/" />
<property name="jmxModeOn" value="true" />

</properties>
</mule-descriptor>

This is the configuration for the
satellite archive service. It is
configured to listen on a JMS queue
and process the file identified by the
message received from that queue.

EDEX Class handling message.

Move to working directory.

Up to 4 instances used for this end point.

Inbound JMS queue.

Outbound JMS queue.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 345

satelite-ingest.xml (cont’d)
<!-- Endpoint to ingest Satellite data -->
<mule-descriptor

name="Awips.Edex.Service.IngestSrv-satellite"
singleton="false"
implementation="com.raytheon.edex.services.IngestSrv">

<inbound-router>
<endpoint name="CP-Sat" address="jms://cp/sat" />

</inbound-router>
<outbound-router>

<router className="org.mule.routing.outbound.FilteringListMessageSplitter">
<endpoint address="vm://indexVMQueue" />

</router>
</outbound-router>
<threading-profile maxThreadsActive="1" maxThreadsIdle="1" />
<properties>

<property name="pluginName" value="SATELLITE" />
</properties>

</mule-descriptor>

This is the configuration for the
satellite ingest endpoint. It is
configured to listen on a JMS queue
and process the file identified by the
message received from that queue.

EDEX Class handling message.

Inbound JMS queue.

Outbound JMS queue,
splits multiple messages.

Thread pooling for this endpoint.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 346

Questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 347

Revised Data Access Layer Implementation

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 348

DAO Pooling: Overview
Database performance, specifically slow database access
times, identified as an issue coming out of TO6
– The Data Access Layer (DAL) was instantiating and destroying a

Data Access Object (DAO) for each database interaction
– Because the DAO encapsulated the database connection, this

tends to be a (time-) expensive operation

Pooling mechanism introduced in TO8 to limit the potentially
expensive operation of instantiating data access objects
– DAO created the first time it is needed, then maintained in a pool of

available objects
– When a client needs to access the database, it gets the DAO from

the pool rather than creating a new DAO object instance

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 349

DAO Pooling: Overview (cont’d)

DAO pooling mechanism consists of three classes
– DaoPool: A singleton, this is the class clients utilize to borrow and return a DAO
– DaoFactory: The class is used internally by DaoPool to instantiate appropriate DAO
– DaoConfig: This class contains information about the DAO; the database name,

Hibernate class, and the Hibernate session factory and transaction factory. Provides
static convenience methods for obtaining configurations.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 350

DAO Pooling: DaoPool Class
Main class used for borrowing data
access objects
Consists of two main methods:
– borrowObject(). Used to obtain the

DAO from the pool
– returnObject(). Used to return the

DAO to the pool
Every call of borrowObject() must be
followed by a matching call of
returnObject()

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 351

DAO Pooling: Borrowing a DAO
Make a call to DaoPool.getInstance().borrowObject(Object key);
Key may be any of 3 types object types: String, Class<?> and
DaoConfig
– String object: The value of the String is the name of a database

A data access object for the specified database is returned
The DAO will be usable only for database inserts and updates
(Hibernate requires a class instance to retrieve data)

– Class<?> object: The Class object of a DAO
An instance of the DAO is returned
The DAO has full database functionality available

– DaoConfig object: An instance of DaoConfig describing the
desired DAO

The DaoFactory is used to construct a DAO matching the properties
of the DaoConfig object.
This option allows user to create a DOA “on the fly” when the DAO
does not already exist

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 352

DAO Pooling: Utilization
This code snippet is from the AIREP Decoder.

As with any pooled resource, one must be careful to return
borrowed objects to the pool.

Always use a try – finally block when using the DAO pool
As shown here, the DAO class object is normally used to
borrow the DAO instance

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 353

DAO Pooling: Pool Configuration
Pool Configuration options
located in the
DALConfig.xml file
These may be
changed, but
will not take
effect until
Mule is
restarted.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 354

DAO Pooling: Additional Information
EDEX Database pooling utilizes the generic object pooling
API provided by the Apache Commons Pool project
More information available at:
http://commons.apache.org/pool/

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 355

Questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 356

Revised Database Definition Pattern

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 357

EDEX Plug-Ins: The Plug-In Concept
EDEX plug-in contains
multiple classes and definition
files
– A sample plug-in directory

structure – the satellite decoder
plug-in – shown here

– A plug-in is not limited to this
directory structure; it may contain
additional directories

EDEX services use the Plug-
In to decode data, store data,
retrieve data and convert data
for transfer to clients

Note: “com/raytheon” may be
replaced by “gov/lab”

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 358

EDEX Plug-Ins: Plug-In Configuration Files

Folder File Description
build-components.properties Defines the build dependencies for the

plug-in
client-includes.dat Defines the files to include in the client

version of the plug-in
binding.xml Defines the JiBX bindings for data

classes in the plug-in
<data-type>.db.xml Defines the database table definitions

for the plug-in
<data-type.hbm.xml Defines the Hibernate mappings for

the plug-in
<root>/res/conf plugin.xml Defines run-time configuration values

for the plug-in
<root>/res/endpoints <name>-ingest.xml Defines the Ingest ESB definitions for

using the plug-in for data ingest

<root>/res

<root>

Most aspects of an EDEX plug-in controlled by a set of files
– Although not strictly required, most Plug-Ins have these files

Note:
– <name> is the plugin name, e.g., grib
– <root> is plugin-<name>, e.g., plugin-grib

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 359

EDEX Plug-Ins: DB Table Generation
EDEX has ability to generate Plug-In related database tables
automatically
– Table generation controlled by the Plug-In’s <data-type>.db.xml files
– Each file contains the definition of a single database file

A Plug-In’s tables are generated when the Plug-In is first
added to the EDEX system
– Tables are also added following a complete database purge

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 360

EDEX Plug-Ins: Data Retention
EDEX uses the data table definition file to specify data
retention for automatic data management
– Maintenance consists of deleting old data files (HDF5) and purging old

data from the database (PostgreSQL)
– Data maintenance is performed

When the EDEX server initially starts
At 15 minutes past the hour as EDEX continues to execute

EDEX uses a partitioned approach to data management
– Data partitioned into 4 segments

In the database, each data table has 4 partitions
– Data deletion accomplished by deleting/purging appropriate partition
Example: If a retention time of 24 hours is specified, each
partition will contain 12 hours of data
– More on this later

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 361

EDEX Plug-Ins: Data Table Partitions

EDEX database uses PostgreSQL partitioning of database tables
– Each table has 4 partitions
– Each time data is purged; the oldest partition is deleted and re-created
Partition usage (once the server is running)
– Two partitions contain archived data
– One partition is being actively used to store new data
– One partition is being deleted and re-created

Main Table

Partitions

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 362

EDEX Plug-In: Data Table Partition Example
Assuming a specified retention time of 24 hours
– Each partition will hold 12 hours of data
Data stored into partition A & B, D as a
“spare”
– After 24 hours, data begins to store into C
– A minimum of 24 hours data is retained
When C is filled, data is stored into D
– At that point, A is purged and re-created
– Once again, a minimum of 24 hours
When D is filled, data is stored into A
– At that point, B is purged and re-created
This process continues as long as EDEX
continues to execute!

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 363

EDEX Plug-Ins: DB Table Definition

Example of a db.xml file. The next
few slides explain each element.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 364

EDEX Plug-Ins: DB Table Definition (cont’d)
Tag Description

tableDefinition Defines a single table. Each table definition file contains a
single tableDefinition tag set

tableName Defines the name of the database table to create
hibClass Defines the name of the class that represents a record in this

table
retentionHours Defines the number of hours to retain data in this table
order Defines the order in which related tables are created
defaultClass Specifies if this table is the default (base) table for the plug-in
partitioned Specifies whether the table may be partitioned
linkedExternally Specifies whether entries in this table are linked to data in the

HDF5 repository
columnDefinition Defines a column in the table. A each table contains multiple

column definitions

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 365

EDEX Plug-Ins: DB Table Definition –
Additional Information on Table Definition

order tag: A Plug-In may specify multiple tables, each
specification in a separate file. The order tag determines the
order in which tables are created. Each table in a Plug-In
must have a different order value. This allows a Plug-In to:
– Specify multiple tables and
– Include dependencies between the tables.

defaultClass tag: A Plug-In may define multiple tables for its
data. The defaultClass tag specifies if the table is the main
for the Plug-In. This table is the one used by term query.
Exactly one table may be designated as the default.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 366

EDEX Plug-Ins: DB Column Definition
Tag Description

columnDefinition Defines a single column of the table
name The name of the column
columnType The column type
constraintType Constraint type for the column. Valid values are

PRIMARY KEY, UNIQUE, FOREIGN KEY, NONE
precision The size, number of characters or digits, of the field
scale (For numeric floats only) the number of decimal places
dataURI Specifies whether this column is used in creating the

data DUI
index Specifies whether this column is indexed. Valid values

are single, composite, none

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 367

EDEX Plug-Ins: DB Column Definition –
Data URI Column

Main table for a data-type plug-in includes a data
URI column
– The data URI column is the primary key for this

table.
– For externally linked tables, the data URI column

links the meta-data in the table to the binary data in
the HDF5 repository.

– Selected columns in the table contribute to the data
URI. These columns must be selected to provide a
unique column value.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 368

Questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 369

Tool Modifications for TO8

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 370

Problems Identified/Addressed
Problems with the original Plug-In Tool identified by NWS:

1. A need to better handle the “package name space”
2. A need for scroll bars to be able to use the entire tool

In addition, there was some refactoring of the Plug-In pattern
3. A need update the tool to match the refactored Plug-In

Of these,
– #1 and #3 addressed via code changes
– #2 is a consequence of Eclipse. We present a partial workaround.

At this point, there is no way to use the tool on a “small” screen.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 371

Displaying Plug-In Tool

After the tool is displayed,
drag it to the right side of
Eclipse. Once that is done,
resize as desired.

Drag tool to new position.

Drag from original position.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 372

Plug-In Tool, New Features
The Plug-In tool has been modified slightly
to better fit thePlug-In creation pattern.
– Code templates are part of the Plug-In, so you

need to specify your Eclipse location.
– Wording of checkbox labels has changed –

does not change functionality.
– A precision value has been added to the

section for defining data entries. This is used
mainly for defining database fields for strings.
It should be set to zero (0) for other data types.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 373

Plug-In Tool, Demonstration

Real time demo of Plug-In tool.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 374

Questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 375

Code Example

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 376

Code Walk-Through

Examination of Code for a
Data-Type Plug-In Using Eclipse

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 377

Installer Modifications for TO8

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 378

AWIPS II Installer
With AWIPS II, there are now 3 installers
–CAVE installer
–EDEX installer
–ADE installer

AWIPS II Installers require Java

Note: Support for EDEX installer on Windows has been
dropped with T08.

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 379

AWIPS II Installer Updates
Versions have been updated
– Shown here is the general information

page, also on other pages

Pack selection page has
– Fewer choices
– Support for clustered servers

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 380

ADE Installer
AWIPS II ADE 2.0 now has a
separate installer
Installs development tools
– AWIPS II (TO 8) code base
– Eclipse Europa (3.3.0)

ADE installation location is
selectable at install time
– Default location is “~/ade”

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 381

ADE Installer (cont’d)
ADE components installed are
selectable
– Must install code base
– Eclipse installation is optional

Eclipse install required for CAVE work

Uninstaller provided as part of the
ADE installation

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 382

ADE Installer (cont’d)

Basic ADE 2.0 install structure shown here
– Name and location of the root directory is configurable (at installation)
– Default installation location:

<user-home>/ade (Linux)
C:\Program Files\ade (Windows)

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 383

Questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 384

CAVE Modifications for TO8

Other Items of Interest

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 385

CAVE Modifications for TO8
TO8 implemented selected AWIPS I functionality in CAVE
– For the developer, this amounts to an addition of code to the baseline
– The basic patterns and techniques used by the CAVE developer have

not changed – refer to existing AWIPS II modules

Any questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 386

Coming in TO9
Additional AWIPS I functionality
– Core GFE
– AVN FPS
– D2D functionality

Python Scripting support
Local application support

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 387

Coming in TO T1 Training Updates
Documentation of existing uEngine Tasks
Updates to existing Training Modules (1 – 11)
Annotated code examples

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 388

Questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 389

Wrap-Up

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 390

Summary
Covered modifications in EDEX dataflow introduced in TO8
Covered modifications to the Data Access Layer
Implementation introduced in TO8
Covered modifications to the Database Definition Pattern
introduced in TO8
Covered modifications to the to the Plug-in Creation Utility
introduced in TO8
Covered modifications to the Installer for TO8

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

6/22/07 Page 391

Resources
On the ADE 1.0 DVD (TO8)
– Current code available for examination in the CAVE baseline
– JavaDoc documentation available

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Purpose of Course
	Training Prerequisites
	Course Objectives
	Course Objectives (cont’d)
	Course Objectives (cont’d)
	Course Objectives (cont’d)
	Course Objectives (cont’d)
	Course Objectives (cont’d)
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Introduction
	Architecture History Leading to SOA
	Core Decisions –�Use ESB and Container-Based Processing
	Core Decisions (cont’d)			
	System Concept: AWIPS Architecture �Environmental Intelligence Framework
	AWIPS Architecture Definitions
	AWIPS Architecture Concept –�Architecture Framework Implementation
	AWIPS ADE Open Source Projects: Integrated Open Source Projects
	SOA Framework Concept �Extensible Architecture – Minimal Coupling
	Architecture Features: �Execution Container & Data
	Architecture Features – Geospatial�Spatial-Enabled PostgreSQL and GeoTools with JTS
	Architecture Features: Visualization
	ADE CAVE Visualization: Service End Point�Enables Gaming Style Data Interactions
	Architecture Features: Languages, Interprocess Communication
	Conceptual Architecture: �Logical Layered Viewpoint
	AWIPS II ADE High-Level System Services �SOA Services Running in an ESB Container
	Service Descriptions
	ADE Implemented Design Patterns�Patterns Enable AWIPS “ilities”
	Software CM/Build/Deploy Pattern�Design Pattern
	Geospatial Pattern �Basic GIS Ingest, Indexing, Output, and Analysis
	Geospatial Pattern �Coordinate Reference System (CRS)
	AWIPS Data Models
	Data Model Introduction�Canonical XML SOA Interfaces Excluded
	Conceptual Data Model Design�I/O Formats Follows Existing Standards
	AWIPS Canonical XML – �Top Level Structure (End Point Independent)
	Data Access Layer API�Hibernate Leading Object to Relational Approach
	Hibernate XML Object/Relational Mapping�Defined in SOA Plug-In: Enables Adaptability
	ADE Data Access Pattern�Layered API Leveraging Spring’s Hibernate Support
	SOA Plug-In Defines a Metadata Table Set -- �Each Plug-In Also Defines an HDF5 Set
	Plug-In Creates New Metadata in RDBMS�Uses PostgreSQL Table Inheritance and Rules
	Metadata Demo – 	�Using CAVE’s Volume Browser
	General DataURI Concept – �Key for System Adaptability to New Data Types
	Metadata Model Drives DataURI�Auto-Generated DataURI Couples HDF5 to Metadata
	Data Persistence Using HDF5�HDF5 Files In Time-Ordered Bins Like Metadata
	ADE Data Persistence Using HDF5�Application Code Interfaces Through API
	uEngine Using the Data Access Layer�Single API Enables uEngine to Access All Data
	Purging Data: Self-Maintaining�Drops Metadata Tables & HDF5 Bins Periodically
	System Flow Diagrams
	Ingest Flow �Ingest at a Clustered End Point
	Product Request Flow �Cave Requests Data for Display as a GIS Layer
	Notification Flow – �Ingest Flow Triggering Notification
	Subscription Flow – �CAVE Requests a Subscription
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	AWIPS Development Environment (ADE) –�An End-to-End Technical Reference Architecture
	ADE Delivery: One DVD Posted to Site
	ADE Install Procedure
	Start-Up Server Side
	ADE Regression Tests: Start Tomcat
	ESB / Container Log File for Ingest
	Remote Debugging of ESB SOA Services�Example Stepping Through “ProductSrv”
	Server Side: Developer Build and Deploy
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	uEngine Overview
	uEngine Task Execution Pattern �Breaks Up Execution Into Small, Reusable Tasks
	uEngine Task Execution Pattern �Original Concept – XML-Based Declarative Scripts
	uEngine Task Execution Pattern�Original Concept – XML-Based Declarative Scripts
	uEngine Task Execution Pattern �Data Transformation Into Decision Aids: Scripting
	uEngine Task Execution Pattern�Original Concept: XML-Based Declarative Scripts
	uEngine Task Execution Pattern�Scripting Engine Alternatives: Jython
	uEngine Task Execution Pattern�Scripting Engine Alternatives: JavaScript
	Architecture
	Architecture: How It Works
	Architecture: Potential Issues
	Tasks
	Programming Example
	Programming Example: Java Code
	JavaScript Scripting
	JavaScript Scripting: �Sample GriB to Image Script
	JavaScript Scripting: �Sample Query For METARS Script
	JavaScript Scripting: Object Oriented
	JavaScript Scripting: Object Oriented (cont’d)
	JavaScript Scripting: �Three-Tiered Approach
	Programming Example
	Programming Example: The JavaScript
	Client Applications
	Client Applications (cont’d)
	JavaScript Scripting: Subscriptions
	JavaScript Scripting: Subscriptions (cont’d)
	Programming Example
	Programming Example:�Grib Request Class for Subscription
	Micro Engine: Known Issues
	Summary
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	Prerequisites
	Topics
	Why a Plug-In Pattern?
	What Is a Plug-In in Java Terms?
	Easy Adaptability to New Data Types
	Plug-In Interface to SOA Services
	High-Level Concept Diagram
	Java Files Involved in Plug-In Concept
	Data Type Plug-In Factory Concept
	Factory Concept
	AWIPS EDEX Data Flow & Plug-Ins
	Plug-In Relationship to Metadata
	Plug-In Relationship to Data Persistence
	Plug-In Relationship to Data Indexing
	Plug-In Relationship to Product Server
	Plug-In Relationship to Notification
	AWIPS EDEX Project Organization
	AWIPS EDEX Project Organization (cont’d)
	AWIPS Plug-In Directory Structure
	AWIPS Plug-In Directory Structure Considerations
	AWIPS Plug-In Directory Structure �Considerations (cont’d)
	AWIPS Plug-In Directory Structure
	AWIPS EDEX Build Files to Modify
	AWIP EDEX Plug-In Jar Structure
	Makeup of the Plug-In Architecture
	Plug-In Architecture: �Data Record Classes
	Plug-In Architecture: �Data Access Layer Design
	Plug-In Architecture: �The Plug-in Decoder Proxy Class
	AWIPS EDEX Plug-In Decoder Proxy
	Plug-In Architecture: �Plug-In Decoder Proxy Class Design
	Plug-In Architecture: �Plug-In Decoder Proxy Utilization
	Plug-In Architecture: �Decoder Proxy/Message Decoder Class Diagram
	Plug-In Architecture: �IMessageDecoder Functionality
	Plug-In Architecture: �IMessageDecoder Functionality (cont’d)
	Plug-In Architecture: �Abstract Message Decoder
	Plug-In Architecture: �IMessageDecoder Utilization
	Plug-In Architecture: �IMessageDecoder Example
	Plug-In Architecture: �IRecordSeparator Functionality
	Plug-In Architecture: �IRecordSeparator Design
	Plug-In Architecture: �IRecordSeparator Utilization
	Plug-In Architecture: �IRecordSeparator Utilization (cont’d)
	Plug-In Architecture: �RecordSeparatorImpl
	Plug-In Architecture: �Data Persistence Functionality
	Plug-In Architecture: �Data Persistence Functionality: IPersistable
	Plug-In Architecture: �Data Persistence Functionality: IngestSrv
	Plug-In Architecture: �Data Persistence Functionality: HDF5Dao
	Plug-In Architecture: �IPersistable Example – SatelliteRecord
	Plug-In Architecture:�Data Access Objects
	Plug-In Architecture:�Data Access Objects - SatMapCoverageDao
	Plug-In Architecture: �Data Record Functionality
	Plug-In Architecture: �Data Record Design
	Plug-In Architecture: �Data Record Utilization
	Plug-In Architecture: �Data Record Example
	Plug-In Architecture: �Required Configuration Files
	Plug-In Configuration: �plugin.xml
	Plug-In Configuration: �attributes.xml
	Plug-In Configuration: �binding.xml
	Plug-In Configuration: �<data-name>.db.xml
	Plug-In Configuration: �<data-name>.db.xml
	Plug-In Configuration: �<data-name>.hbm.xml
	AWIPS Plug-In Creation Tool: New With ADE 1.0
	Installation of ADE Plug-In Creation Tool
	Accessing ADE Plug-In Creation Tool
	Accessing ADE Plug-In Creation Tool (cont’d)
	Creating a Plug-In With the Tool
	Creating a Plug-In With the Tool (cont’d)
	Creating a Plug-In With the Tool (cont’d)
	Creating a Plug-In With the Tool (cont’d)
	Creating a Plug-In With the Tool (cont’d)
	Creating a Plug-In With the Tool (cont’d)
	Plug-In Architecture: �Adding the Ingest End Point
	Plug-In Architecture: �Adding the Ingest End Point
	Plug-In Architecture: �Adding a uEngine Task
	Summary
	Resources
	Hands-On Exercise: Data Type Plug-In
	Hands-On Exercise: Data Type Plug-In (cont’d)
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	SOA Service Design Pattern:�Wrap the Interface to the ESB/Container
	ESB Message Event Handling to Service
	SOA’s Service Process Method
	Wiring the SOA Service Into the Container
	Mule ESB/ Container Startup Reads Wiring
	JMX Console Connects to Mule ESB Runtime�(JMX Is a T05 Capability, But T04 Has Some Basics)
	Exercise: Monitoring an SOA Service�SBNsatIngestSRV Monitoring
	Extra Credit: Debug SOA Service
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	Motivation and Goals of CAVE
	CAVE: Vision
	CAVE Top-Level Concept
	Goal 1: Minimize Infrastructure, Maximize Reuse
	Goal 1: Minimize Infrastructure, Maximize Reuse �Architectural Diagram
	Goal 1: Minimize Infrastructure, Maximize Reuse �Eclipse RCP
	Goal 1: Minimize Infrastructure, Maximize Reuse �Characteristics of Eclipse RCP Application
	Goal 1: Minimize Infrastructure, Maximize Reuse Eclipse Technologies Used in CAVE
	Goal 2: Performance
	Goal 2: Performance �Performance Using Raster Data
	Goal 2: Performance �Performance in Vector and Plot Data
	Goal 2: Performance �Performance of UI – Eclipse Jobs Enable Multiprocessing
	Goal 3: Extendability
	CAVE Core Data Structure Concepts
	CAVE Resource Structure – ADE 0.1�Similar in Concept to D2D Depictable
	CAVE Resource Capabilities
	CAVE Resource Capabilities
	Map Descriptor
	Exercise: Hands-On Rendering CAVE
	Exercise:�Launching CAVE From the Baseline
	Exercise:�Launching CAVE From the Baseline (Cont’d)
	Exercise:�Imaging Resources in CAVE
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	Baseline Orientation
	Important Capability Plug-In Packages
	Open Source Repackaged Plug-Ins
	Eclipse Plug-In XML
	Eclipse Plug-In XML (cont’d)
	Exercise: Plug-In XML
	Exercise: �Creating a Custom Imaging Resource
	Exercise: �Creating a Custom Imaging Resource (Cont’d)
	References: Eclipse
	Additional Information
	Additional Information (cont’d)
	Additional Information (cont’d)
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	CAVE Extension Mechanisms
	Extension Mechanism: New Resource
	Resource Extension Example: WarnGen
	Extension Mechanism: Toolbar Item
	Toolbar Extension Example: WarnGen
	Extension Mechanism: Menu Items
	Extension Mechanism: New Editor
	Creating a New Plug-In
	Getting Started
	Creating a New Project in Eclipse
	Creating a New Project in Eclipse (cont’d)
	Creating a New Project in Eclipse (cont’d)
	Setting up the Project Environment
	Adding to the Project Build
	Adding to the Project Build (cont’d)
	Creating a New Resource
	Creating a New Resource (cont’d)
	Creating a New Resource (cont’d)
	Creating a New Resource (cont’d)
	Creating a New Resource (cont’d)
	Add Toolbar Item Code
	Add Toolbar Item Code (cont’d)
	Adding a Toolbar Action
	Adding a Toolbar Action (cont’d)
	Adding a Toolbar Action (cont’d)
	Run Our Example
	Run Our Example (cont’d)
	Summary
	Resources
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	EDEX/Cave Installation
	EDEX Installation (Linux)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (Linux) (cont’d)
	EDEX Installation (VMWare Player)
	EDEX Installation (VMWare Player) (cont’d)
	CAVE Installation
	CAVE Installation (cont’d0
	CAVE Installation (cont’d)
	CAVE Installation (cont’d)
	CAVE Installation (cont’d)
	CAVE Installation (cont’d)
	CAVE Installation (cont’d)
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	CAVE Menus
	CAVE Menus (cont’d)
	CAVE Menus (cont’d)
	CAVE Menus (cont’d)
	CAVE Menus (cont’d)
	Exercise:�Creating a New Menu Item
	Exercise: Creating a New Menu Item�Getting Started
	Exercise: Creating a New Menu Item�Getting Started (cont’d)
	Exercise: Creating a New Menu Item�Creating the Action Class
	Exercise: Creating a New Menu Item�Creating the Action Class (cont’d)
	Exercise: Creating a New Menu Item�Building the Command XML
	Exercise: Creating a New Menu Item�Creating the Handler XML
	Exercise: Creating a New Menu Item�Creating the Handler XML (cont’d)
	Summary
	Resources
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	General Localization Approach
	Localization Overview
	Localization Overview
	CAVE Localization Preferences
	Localization in CAVE
	Localization in CAVE
	Localization in EDEX
	Localization in EDEX
	Summary
	Resources
	Objectives
	Modified EDEX Ingest Data Flow
	Ingest Data Flow Delivered in TO 6
	Ingest Data Flow Delivered in TO 8
	TO 8 EDEX Ingest Services
	Data Flow Impact
	satelite-ingest.xml
	satelite-ingest.xml (cont’d)
	satelite-ingest.xml (cont’d)
	satelite-ingest.xml (cont’d)
	DAO Pooling: Overview
	DAO Pooling: Overview (cont’d)
	DAO Pooling: DaoPool Class
	DAO Pooling: Borrowing a DAO
	DAO Pooling: Utilization
	DAO Pooling: Pool Configuration
	DAO Pooling: Additional Information
	EDEX Plug-Ins: The Plug-In Concept
	EDEX Plug-Ins: Plug-In Configuration Files
	EDEX Plug-Ins: DB Table Generation
	EDEX Plug-Ins: Data Retention
	EDEX Plug-Ins: Data Table Partitions
	EDEX Plug-In: Data Table Partition Example
	EDEX Plug-Ins: DB Table Definition
	EDEX Plug-Ins: DB Table Definition (cont’d)
	EDEX Plug-Ins: DB Table Definition –�Additional Information on Table Definition
	EDEX Plug-Ins: DB Column Definition
	EDEX Plug-Ins: DB Column Definition –�Data URI Column
	Problems Identified/Addressed
	Displaying Plug-In Tool
	Plug-In Tool, New Features
	Plug-In Tool, Demonstration
	Code Walk-Through
	AWIPS II Installer
	AWIPS II Installer Updates
	ADE Installer
	ADE Installer (cont’d)
	ADE Installer (cont’d)
	CAVE Modifications for TO8
	Coming in TO9
	Coming in TO T1 Training Updates
	Summary
	Resources

